Code
prep(rec)
Condition
Warning:
Column `x` returned NaN. Consider using `step_zv()` to remove variables containing only a single value.
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
predictor: 1
-- Training information
Training data contained 10 data points and no incomplete rows.
-- Operations
* Range scaling to [0,1] for: x | Trained
Code
prep(rec)
Condition
Warning:
Column `x` returned NaN. Consider avoiding `Inf` values before normalising.
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
predictor: 1
-- Training information
Training data contained 4 data points and no incomplete rows.
-- Operations
* Range scaling to [0,1] for: x | Trained
Code
prep(rec)
Condition
Warning:
Column `x` returned NaN. Consider avoiding `Inf` values before normalising.
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
predictor: 1
-- Training information
Training data contained 4 data points and no incomplete rows.
-- Operations
* Range scaling to [0,1] for: x | Trained
Code
bake(standardized_trained, new_data = biomass_te[, 1:3])
Condition
Error in `step_range()`:
! The following required column is missing from `new_data`: hydrogen.
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Operations
* Range scaling to [0,1] for: <none>
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Training information
Training data contained 32 data points and no incomplete rows.
-- Operations
* Range scaling to [0,1] for: <none> | Trained
Code
print(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Operations
* Range scaling to [0,1] for: disp and wt
Code
prep(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Training information
Training data contained 32 data points and no incomplete rows.
-- Operations
* Range scaling to [0,1] for: disp and wt | Trained
Code
recipe(mpg ~ ., data = mtcars) %>% step_range(disp, wt, max = "max") %>% prep()
Condition
Error in `step_range()`:
Caused by error in `prep()`:
! `max` must be a number, not the string "max".
Code
recipe(mpg ~ ., data = mtcars) %>% step_range(disp, wt, min = "min") %>% prep()
Condition
Error in `step_range()`:
Caused by error in `prep()`:
! `min` must be a number, not the string "min".
Code
recipe(mpg ~ ., data = mtcars) %>% step_range(disp, wt, clipping = "never") %>%
prep()
Condition
Error in `step_range()`:
Caused by error in `prep()`:
! `clipping` must be `TRUE` or `FALSE`, not the string "never".
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.