Man pages for tidymodels/recipes
Preprocessing and Feature Engineering Steps for Modeling

add_stepAdd a New Operation to the Current Recipe
bakeApply a trained preprocessing recipe
case-weight-helpersHelpers for steps with case weights
case_weightsUsing case weights with recipes
check_classCheck variable class
check_colsCheck if all columns are present
check_missingCheck for missing values
check_namecheck that newly created variable names don't overlap
check_new_dataCheck for required column at bake-time
check_new_valuesCheck for new values
check_rangeCheck range consistency
check_typeQuantitatively check on variables
detect_stepDetect if a particular step or check is used in a recipe
developer_functionsDeveloper functions for creating recipes steps
discretizeDiscretize Numeric Variables
fixedHelper Functions for Profile Data Sets
format_ch_vecHelpers for printing step functions
formula.recipeCreate a formula from a prepared recipe
fully_trainedCheck to see if a recipe is trained/prepared
get_data_typesGet types for use in recipes
get_keep_original_colsGet the 'keep_original_cols' value of a recipe step
has_roleRole Selection
juiceExtract transformed training set
names0Naming Tools
prepEstimate a preprocessing recipe
prepperWrapper function for preparing recipes within resampling
print.recipePrint a Recipe
rand_idMake a random identification field for steps
recipeCreate a recipe for preprocessing data
recipesrecipes: A package for computing and preprocessing design...
recipes_eval_selectEvaluate a selection with tidyselect semantics specific to...
recipes_extension_checkChecks that steps have all S3 methods
recipes-internalInternal Functions
recipes_pkg_checkUpdate packages
recipes_ptypePrototype of recipe object
recipes_ptype_validateValidate prototype of recipe object
recipes_remove_colsRemoves columns if options apply
recipes-role-indicatorRole indicators
reexportsObjects exported from other packages
remove_original_colsRemoves original columns if options apply
required_pkgs.recipeS3 methods for tracking which additional packages are needed...
rolesManually alter roles
selectionsMethods for selecting variables in step functions
sparse_dataUsing sparse data with recipes
step'step' sets the class of the 'step' and 'check' is for...
step_arrangeSort rows using dplyr
step_bagimputeImpute via bagged trees
step_bin2factorCreate a factors from A dummy variable
step_BoxCoxBox-Cox transformation for non-negative data
step_bsB-spline basis functions
step_centerCentering numeric data
step_classdistDistances to class centroids
step_classdist_shrunkenCompute shrunken centroid distances for classification models
step_corrHigh correlation filter
step_countCreate counts of patterns using regular expressions
step_cutCut a numeric variable into a factor
step_dateDate feature generator
step_depthData depths
step_discretizeDiscretize Numeric Variables
step_dummyCreate traditional dummy variables
step_dummy_extractExtract patterns from nominal data
step_dummy_multi_choiceHandle levels in multiple predictors together
step_factor2stringConvert factors to strings
step_filterFilter rows using dplyr
step_filter_missingMissing value column filter
step_geodistDistance between two locations
step_harmonicAdd sin and cos terms for harmonic analysis
step_holidayHoliday feature generator
step_hyperbolicHyperbolic transformations
step_icaICA signal extraction
step_impute_bagImpute via bagged trees
step_impute_knnImpute via k-nearest neighbors
step_impute_linearImpute numeric variables via a linear model
step_impute_lowerImpute numeric data below the threshold of measurement
step_impute_meanImpute numeric data using the mean
step_impute_medianImpute numeric data using the median
step_impute_modeImpute nominal data using the most common value
step_impute_rollImpute numeric data using a rolling window statistic
step_indicate_naCreate missing data column indicators
step_integerConvert values to predefined integers
step_interactCreate interaction variables
step_interceptAdd intercept (or constant) column
step_inverseInverse transformation
step_invlogitInverse logit transformation
step_isomapIsomap embedding
step_knnimputeImpute via k-nearest neighbors
step_kpcaKernel PCA signal extraction
step_kpca_polyPolynomial kernel PCA signal extraction
step_kpca_rbfRadial basis function kernel PCA signal extraction
step_lagCreate a lagged predictor
step_lincombLinear combination filter
step_logLogarithmic transformation
step_logitLogit transformation
step_lowerimputeImpute numeric data below the threshold of measurement
step_meanimputeImpute numeric data using the mean
step_medianimputeImpute numeric data using the median
step_modeimputeImpute nominal data using the most common value
step_mutateAdd new variables using dplyr
step_mutate_atMutate multiple columns using dplyr
step_naomitRemove observations with missing values
step_nnmfNon-negative matrix factorization signal extraction
step_nnmf_sparseNon-negative matrix factorization signal extraction with...
step_normalizeCenter and scale numeric data
step_novelSimple value assignments for novel factor levels
step_nsNatural spline basis functions
step_num2factorConvert numbers to factors
step_nzvNear-zero variance filter
step_ordinalscoreConvert ordinal factors to numeric scores
step_otherCollapse infrequent categorical levels
step_pcaPCA signal extraction
step_percentilePercentile transformation
step_plsPartial least squares feature extraction
step_polyOrthogonal polynomial basis functions
step_poly_bernsteinGeneralized bernstein polynomial basis
step_profileCreate a profiling version of a data set
step_rangeScaling numeric data to a specific range
step_ratioRatio variable creation
step_regexDetect a regular expression
step_relevelRelevel factors to a desired level
step_reluApply (smoothed) rectified linear transformation
step_renameRename variables by name using dplyr
step_rename_atRename multiple columns using dplyr
step_rmGeneral variable filter
step_rollimputeImpute numeric data using a rolling window statistic
step_sampleSample rows using dplyr
step_scaleScaling numeric data
step_selectSelect variables using dplyr
step_shuffleShuffle variables
step_sliceFilter rows by position using dplyr
step_spatialsignSpatial sign preprocessing
step_spline_bBasis splines
step_spline_convexConvex splines
step_spline_monotoneMonotone splines
step_spline_naturalNatural splines
step_spline_nonnegativeNon-negative splines
step_sqrtSquare root transformation
step_string2factorConvert strings to factors
step_timeTime feature generator
step_unknownAssign missing categories to "unknown"
step_unorderConvert ordered factors to unordered factors
step_windowMoving window functions
step_YeoJohnsonYeo-Johnson transformation
step_zvZero variance filter
summary.recipeSummarize a recipe
terms_selectSelect terms in a step function.
tidy.recipeTidy the result of a recipe
update_role_requirementsUpdate role specific requirements
update.stepUpdate a recipe step
tidymodels/recipes documentation built on Nov. 29, 2024, 3:05 p.m.