add_step | Add a New Operation to the Current Recipe |
bake | Apply a trained preprocessing recipe |
case-weight-helpers | Helpers for steps with case weights |
case_weights | Using case weights with recipes |
check_class | Check variable class |
check_cols | Check if all columns are present |
check_missing | Check for missing values |
check_name | check that newly created variable names don't overlap |
check_new_data | Check for required column at bake-time |
check_new_values | Check for new values |
check_range | Check range consistency |
check_type | Quantitatively check on variables |
detect_step | Detect if a particular step or check is used in a recipe |
developer_functions | Developer functions for creating recipes steps |
discretize | Discretize Numeric Variables |
fixed | Helper Functions for Profile Data Sets |
format_ch_vec | Helpers for printing step functions |
formula.recipe | Create a formula from a prepared recipe |
fully_trained | Check to see if a recipe is trained/prepared |
get_data_types | Get types for use in recipes |
get_keep_original_cols | Get the 'keep_original_cols' value of a recipe step |
has_role | Role Selection |
juice | Extract transformed training set |
names0 | Naming Tools |
prep | Estimate a preprocessing recipe |
prepper | Wrapper function for preparing recipes within resampling |
print.recipe | Print a Recipe |
rand_id | Make a random identification field for steps |
recipe | Create a recipe for preprocessing data |
recipes | recipes: A package for computing and preprocessing design... |
recipes_eval_select | Evaluate a selection with tidyselect semantics specific to... |
recipes_extension_check | Checks that steps have all S3 methods |
recipes-internal | Internal Functions |
recipes_pkg_check | Update packages |
recipes_ptype | Prototype of recipe object |
recipes_ptype_validate | Validate prototype of recipe object |
recipes_remove_cols | Removes columns if options apply |
recipes-role-indicator | Role indicators |
reexports | Objects exported from other packages |
remove_original_cols | Removes original columns if options apply |
required_pkgs.recipe | S3 methods for tracking which additional packages are needed... |
roles | Manually alter roles |
selections | Methods for selecting variables in step functions |
sparse_data | Using sparse data with recipes |
step | 'step' sets the class of the 'step' and 'check' is for... |
step_arrange | Sort rows using dplyr |
step_bagimpute | Impute via bagged trees |
step_bin2factor | Create a factors from A dummy variable |
step_BoxCox | Box-Cox transformation for non-negative data |
step_bs | B-spline basis functions |
step_center | Centering numeric data |
step_classdist | Distances to class centroids |
step_classdist_shrunken | Compute shrunken centroid distances for classification models |
step_corr | High correlation filter |
step_count | Create counts of patterns using regular expressions |
step_cut | Cut a numeric variable into a factor |
step_date | Date feature generator |
step_depth | Data depths |
step_discretize | Discretize Numeric Variables |
step_dummy | Create traditional dummy variables |
step_dummy_extract | Extract patterns from nominal data |
step_dummy_multi_choice | Handle levels in multiple predictors together |
step_factor2string | Convert factors to strings |
step_filter | Filter rows using dplyr |
step_filter_missing | Missing value column filter |
step_geodist | Distance between two locations |
step_harmonic | Add sin and cos terms for harmonic analysis |
step_holiday | Holiday feature generator |
step_hyperbolic | Hyperbolic transformations |
step_ica | ICA signal extraction |
step_impute_bag | Impute via bagged trees |
step_impute_knn | Impute via k-nearest neighbors |
step_impute_linear | Impute numeric variables via a linear model |
step_impute_lower | Impute numeric data below the threshold of measurement |
step_impute_mean | Impute numeric data using the mean |
step_impute_median | Impute numeric data using the median |
step_impute_mode | Impute nominal data using the most common value |
step_impute_roll | Impute numeric data using a rolling window statistic |
step_indicate_na | Create missing data column indicators |
step_integer | Convert values to predefined integers |
step_interact | Create interaction variables |
step_intercept | Add intercept (or constant) column |
step_inverse | Inverse transformation |
step_invlogit | Inverse logit transformation |
step_isomap | Isomap embedding |
step_knnimpute | Impute via k-nearest neighbors |
step_kpca | Kernel PCA signal extraction |
step_kpca_poly | Polynomial kernel PCA signal extraction |
step_kpca_rbf | Radial basis function kernel PCA signal extraction |
step_lag | Create a lagged predictor |
step_lincomb | Linear combination filter |
step_log | Logarithmic transformation |
step_logit | Logit transformation |
step_lowerimpute | Impute numeric data below the threshold of measurement |
step_meanimpute | Impute numeric data using the mean |
step_medianimpute | Impute numeric data using the median |
step_modeimpute | Impute nominal data using the most common value |
step_mutate | Add new variables using dplyr |
step_mutate_at | Mutate multiple columns using dplyr |
step_naomit | Remove observations with missing values |
step_nnmf | Non-negative matrix factorization signal extraction |
step_nnmf_sparse | Non-negative matrix factorization signal extraction with... |
step_normalize | Center and scale numeric data |
step_novel | Simple value assignments for novel factor levels |
step_ns | Natural spline basis functions |
step_num2factor | Convert numbers to factors |
step_nzv | Near-zero variance filter |
step_ordinalscore | Convert ordinal factors to numeric scores |
step_other | Collapse infrequent categorical levels |
step_pca | PCA signal extraction |
step_percentile | Percentile transformation |
step_pls | Partial least squares feature extraction |
step_poly | Orthogonal polynomial basis functions |
step_poly_bernstein | Generalized bernstein polynomial basis |
step_profile | Create a profiling version of a data set |
step_range | Scaling numeric data to a specific range |
step_ratio | Ratio variable creation |
step_regex | Detect a regular expression |
step_relevel | Relevel factors to a desired level |
step_relu | Apply (smoothed) rectified linear transformation |
step_rename | Rename variables by name using dplyr |
step_rename_at | Rename multiple columns using dplyr |
step_rm | General variable filter |
step_rollimpute | Impute numeric data using a rolling window statistic |
step_sample | Sample rows using dplyr |
step_scale | Scaling numeric data |
step_select | Select variables using dplyr |
step_shuffle | Shuffle variables |
step_slice | Filter rows by position using dplyr |
step_spatialsign | Spatial sign preprocessing |
step_spline_b | Basis splines |
step_spline_convex | Convex splines |
step_spline_monotone | Monotone splines |
step_spline_natural | Natural splines |
step_spline_nonnegative | Non-negative splines |
step_sqrt | Square root transformation |
step_string2factor | Convert strings to factors |
step_time | Time feature generator |
step_unknown | Assign missing categories to "unknown" |
step_unorder | Convert ordered factors to unordered factors |
step_window | Moving window functions |
step_YeoJohnson | Yeo-Johnson transformation |
step_zv | Zero variance filter |
summary.recipe | Summarize a recipe |
terms_select | Select terms in a step function. |
tidy.recipe | Tidy the result of a recipe |
update_role_requirements | Update role specific requirements |
update.step | Update a recipe step |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.