step_ordinalscore: Convert ordinal factors to numeric scores

View source: R/ordinalscore.R

step_ordinalscoreR Documentation

Convert ordinal factors to numeric scores

Description

step_ordinalscore() creates a specification of a recipe step that will convert ordinal factor variables into numeric scores.

Usage

step_ordinalscore(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  columns = NULL,
  convert = as.numeric,
  skip = FALSE,
  id = rand_id("ordinalscore")
)

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this recipe.

...

One or more selector functions to choose variables for this step. See selections() for more details.

role

Not used by this step since no new variables are created.

trained

A logical to indicate if the quantities for preprocessing have been estimated.

columns

A character string of the selected variable names. This field is a placeholder and will be populated once prep() is used.

convert

A function that takes an ordinal factor vector as an input and outputs a single numeric variable.

skip

A logical. Should the step be skipped when the recipe is baked by bake()? While all operations are baked when prep() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id

A character string that is unique to this step to identify it.

Details

Dummy variables from ordered factors with C levels will create polynomial basis functions with C-1 terms. As an alternative, this step can be used to translate the ordered levels into a single numeric vector of values that represent (subjective) scores. By default, the translation uses a linear scale (1, 2, 3, ... C) but custom score functions can also be used (see the example below).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms

character, the selectors or variables selected

id

character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(), step_dummy(), step_dummy_extract(), step_dummy_multi_choice(), step_factor2string(), step_holiday(), step_indicate_na(), step_integer(), step_novel(), step_num2factor(), step_other(), step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(), step_unorder()

Examples

fail_lvls <- c("meh", "annoying", "really_bad")

ord_data <-
  data.frame(
    item = c("paperclip", "twitter", "airbag"),
    fail_severity = factor(fail_lvls,
      levels = fail_lvls,
      ordered = TRUE
    )
  )

model.matrix(~fail_severity, data = ord_data)

linear_values <- recipe(~ item + fail_severity, data = ord_data) %>%
  step_dummy(item) %>%
  step_ordinalscore(fail_severity)

linear_values <- prep(linear_values, training = ord_data)

bake(linear_values, new_data = NULL)

custom <- function(x) {
  new_values <- c(1, 3, 7)
  new_values[as.numeric(x)]
}

nonlin_scores <- recipe(~ item + fail_severity, data = ord_data) %>%
  step_dummy(item) %>%
  step_ordinalscore(fail_severity, convert = custom)

tidy(nonlin_scores, number = 2)

nonlin_scores <- prep(nonlin_scores, training = ord_data)

bake(nonlin_scores, new_data = NULL)

tidy(nonlin_scores, number = 2)

tidymodels/recipes documentation built on Nov. 29, 2024, 3:05 p.m.