#' Remove observations with missing values
#'
#' `step_naomit()` creates a *specification* of a recipe step that will remove
#' observations (rows of data) if they contain `NA` or `NaN` values.
#'
#' @template row-ops
#' @inheritParams step_center
#' @inheritParams step_pca
#' @param role Unused, include for consistency with other steps.
#' @param trained A logical to indicate if the quantities for preprocessing
#' have been estimated. Again included for consistency.
#'
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms` and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-not-supported
#'
#' @template step-return
#' @family row operation steps
#' @export
#'
#' @examples
#'
#' recipe(Ozone ~ ., data = airquality) %>%
#' step_naomit(Solar.R) %>%
#' prep(airquality, verbose = FALSE) %>%
#' bake(new_data = NULL)
step_naomit <- function(recipe, ..., role = NA, trained = FALSE,
columns = NULL, skip = TRUE,
id = rand_id("naomit")) {
add_step(
recipe,
step_naomit_new(
terms = enquos(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_naomit_new <- function(terms, role, trained, columns, skip, id) {
step(
subclass = "naomit",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_naomit <- function(x, training, info = NULL, ...) {
step_naomit_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = recipes_eval_select(x$terms, training, info),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_naomit <- function(object, new_data, ...) {
col_names <- unname(object$columns)
check_new_data(col_names, object, new_data)
tibble::as_tibble(tidyr::drop_na(new_data, tidyselect::all_of(col_names)))
}
#' @export
print.step_naomit <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Removing rows with NA values in "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_naomit <- function(x, ...) {
res <- simple_terms(x, ...)
res$id <- x$id
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.