collect_predictions()
errors informatively if there is no .predictions
columnCode
collect_predictions(lm_splines %>% dplyr::select(-.predictions))
Condition
Error in `collect_predictions()`:
! The .predictions column does not exist. Please refit with the control argument `save_pred = TRUE` to save predictions.
collect_predictions()
errors informatively applied to unsupported classCode
collect_predictions(lm(mpg ~ disp, mtcars))
Condition
Error in `collect_predictions()`:
! No `collect_predictions()` exists for a <lm> object.
Code
collect_predictions(svm_tune, parameters = tibble(wrong = "value"))
Condition
Error in `filter_predictions()`:
! `parameters` should only have columns: "cost value".
Code
lm_splines <- fit_resamples(lin_mod, mpg ~ ., flds)
Message
! Bootstrap1: preprocessor 1/1, model 1/1 (predictions): prediction from rank-deficient fit; consider predict(., rankdeficient="NA")
! Bootstrap2: preprocessor 1/1, model 1/1 (predictions): prediction from rank-deficient fit; consider predict(., rankdeficient="NA")
Code
lm_splines
Output
# Resampling results
# Bootstrap sampling
# A tibble: 2 x 4
splits id .metrics .notes
<list> <chr> <list> <list>
1 <split [32/13]> Bootstrap1 <tibble [2 x 4]> <tibble [1 x 4]>
2 <split [32/17]> Bootstrap2 <tibble [2 x 4]> <tibble [1 x 4]>
There were issues with some computations:
- Warning(s) x2: prediction from rank-deficient fit; consider predict(., rankdefic...
Run `show_notes(.Last.tune.result)` for more information.
Code
lst <- last_fit(lin_mod, mpg ~ ., split)
Message
! train/test split: preprocessor 1/1, model 1/1 (predictions): prediction from rank-deficient fit; consider predict(., rankdeficient="NA")
Code
lst
Output
# Resampling results
# Manual resampling
# A tibble: 1 x 6
splits id .metrics .notes .predictions .workflow
<list> <chr> <list> <list> <list> <list>
1 <split [24/8]> train/test split <tibble> <tibble> <tibble [8 x 4]> <workflow>
There were issues with some computations:
- Warning(s) x1: prediction from rank-deficient fit; consider predict(., rankdefic...
Run `show_notes(.Last.tune.result)` for more information.
collect_notes()
errors informatively applied to unsupported classCode
collect_notes(lm(mpg ~ disp, mtcars))
Condition
Error in `collect_notes()`:
! No `collect_notes()` exists for a <lm> object.
Code
collect_extracts(res_fit)
Output
# A tibble: 5 x 3
id .extracts .config
<chr> <list> <chr>
1 Bootstrap1 <lm> Preprocessor1_Model1
2 Bootstrap2 <lm> Preprocessor1_Model1
3 Bootstrap3 <lm> Preprocessor1_Model1
4 Bootstrap4 <lm> Preprocessor1_Model1
5 Bootstrap5 <lm> Preprocessor1_Model1
Code
collect_extracts(res_nothing)
Condition
Error in `collect_extracts()`:
! The `.extracts` column does not exist.
i Please supply a control object (`?tune::control_grid()`) with a non-`NULL` `extract` argument during resample fitting.
Code
collect_extracts(res_error)
Output
# A tibble: 5 x 3
id .extracts .config
<chr> <list> <chr>
1 Bootstrap1 <try-errr [1]> Preprocessor1_Model1
2 Bootstrap2 <try-errr [1]> Preprocessor1_Model1
3 Bootstrap3 <try-errr [1]> Preprocessor1_Model1
4 Bootstrap4 <try-errr [1]> Preprocessor1_Model1
5 Bootstrap5 <try-errr [1]> Preprocessor1_Model1
collect_extracts()
errors informatively applied to unsupported classCode
collect_extracts(lm(mpg ~ disp, mtcars))
Condition
Error in `collect_extracts()`:
! No `collect_extracts()` exists for a <lm> object.
collect_metrics()
errors informatively applied to unsupported classCode
collect_metrics(lm(mpg ~ disp, mtcars))
Condition
Error in `collect_metrics()`:
! No `collect_metrics()` exists for a <lm> object.
collect_metrics(type)
errors informatively with bad inputCode
collect_metrics(ames_grid_search, type = "boop")
Condition
Error in `collect_metrics()`:
! `type` must be one of "long" or "wide", not "boop".
Code
collect_metrics(ames_grid_search, type = NULL)
Condition
Error in `collect_metrics()`:
! `type` must be a string or character vector.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.