Code
fit_best(knn_pca_res, verbose = TRUE)
Output
Using rmse as the metric, the optimal parameters were:
neighbors: 1
num_comp: 4
Message
i Fitting using 161 data points...
v Done.
Output
== Workflow [trained] ==========================================================
Preprocessor: Recipe
Model: nearest_neighbor()
-- Preprocessor ----------------------------------------------------------------
1 Recipe Step
* step_pca()
-- Model -----------------------------------------------------------------------
Call:
kknn::train.kknn(formula = ..y ~ ., data = data, ks = min_rows(1L, data, 5))
Type of response variable: continuous
minimal mean absolute error: 1.015528
Minimal mean squared error: 2.448261
Best kernel: optimal
Best k: 1
Code
tmp <- fit_best(knn_pca_res, verbose = TRUE, parameters = tibble(neighbors = 1,
num_comp = 1))
Message
i Fitting using 161 data points...
v Done.
No `fit_best()` exists for an integer.
No `fit_best()` exists for a tibble.
"WAT" was not in the metric set. Please choose from: "rmse" and "rsq".
The parameters `neighbors` and `num_comp` are still marked for tuning.
The parameter `num_comp` is still marked for tuning.
`...` must be empty.
x Problematic argument:
* chickens = 2
x The control option `save_workflow = TRUE` should be used when tuning.
Code
manual_wf <- fit_best(res, metric = "rmse", parameters = tune_params)
Condition
Warning:
`metric` is being ignored because `parameters` has been specified.
Code
manual_wf <- fit_best(res, metric = "rmse", eval_time = 10, parameters = tune_params)
Condition
Warning:
`metric` is being ignored because `parameters` has been specified.
Warning:
`eval_time` is being ignored because `parameters` has been specified.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.