#' Example Analysis of Ames Housing Data
#'
#' @details
#' These objects are the results of an analysis of the Ames
#' housing data. A K-nearest neighbors model was used with a small
#' predictor set that included natural spline transformations of
#' the `Longitude` and `Latitude` predictors. The code used to
#' generate these examples was:
#'
#' ```
#' library(tidymodels)
#' library(tune)
#' library(AmesHousing)
#'
#' # ------------------------------------------------------------------------------
#'
#' ames <- make_ames()
#'
#' set.seed(4595)
#' data_split <- initial_split(ames, strata = "Sale_Price")
#'
#' ames_train <- training(data_split)
#'
#' set.seed(2453)
#' rs_splits <- vfold_cv(ames_train, strata = "Sale_Price")
#'
#' # ------------------------------------------------------------------------------
#'
#' ames_rec <-
#' recipe(Sale_Price ~ ., data = ames_train) %>%
#' step_log(Sale_Price, base = 10) %>%
#' step_YeoJohnson(Lot_Area, Gr_Liv_Area) %>%
#' step_other(Neighborhood, threshold = .1) %>%
#' step_dummy(all_nominal()) %>%
#' step_zv(all_predictors()) %>%
#' step_spline_natural(Longitude, deg_free = tune("lon")) %>%
#' step_spline_natural(Latitude, deg_free = tune("lat"))
#'
#' knn_model <-
#' nearest_neighbor(
#' mode = "regression",
#' neighbors = tune("K"),
#' weight_func = tune(),
#' dist_power = tune()
#' ) %>%
#' set_engine("kknn")
#'
#' ames_wflow <-
#' workflow() %>%
#' add_recipe(ames_rec) %>%
#' add_model(knn_model)
#'
#' ames_set <-
#' extract_parameter_set_dials(ames_wflow) %>%
#' update(K = neighbors(c(1, 50)))
#'
#' set.seed(7014)
#' ames_grid <-
#' ames_set %>%
#' grid_max_entropy(size = 10)
#'
#' ames_grid_search <-
#' tune_grid(
#' ames_wflow,
#' resamples = rs_splits,
#' grid = ames_grid
#' )
#'
#' set.seed(2082)
#' ames_iter_search <-
#' tune_bayes(
#' ames_wflow,
#' resamples = rs_splits,
#' param_info = ames_set,
#' initial = ames_grid_search,
#' iter = 15
#' )
#' ```
#'
#' __important note__: Since the `rsample` split columns contain a reference
#' to the same data, saving them to disk can results in large object sizes when
#' the object is later used. In essence, R replaces all of those references with
#' the actual data. For this reason, we saved zero-row tibbles in their place.
#' This doesn't affect how we use these objects in examples but be advised that
#' using some `rsample` functions on them will cause issues.
#'
#' @name example_ames_knn
#' @aliases ames_wflow ames_grid_search ames_iter_search
#' @docType data
#' @return \item{ames_wflow}{A workflow object}
#' \item{ames_grid_search,ames_iter_search}{Results of model tuning. }
#'
#'
#' @keywords datasets
#' @examples
#' library(tune)
#'
#' ames_grid_search
#' ames_iter_search
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.