library(tidymodels)
library(tune)
library(mlbench)
data(PimaIndiansDiabetes)
# ------------------------------------------------------------------------------
set.seed(151)
pima_rs <- vfold_cv(PimaIndiansDiabetes, repeats = 3)
tree_mod <-
decision_tree(cost_complexity = tune(), min_n = tune()) %>%
set_mode("classification") %>%
set_engine("rpart")
pima_wflow <-
workflow() %>%
add_formula(diabetes ~ .) %>%
add_model(tree_mod)
roc_vals <- metric_set(roc_auc)
set.seed(3625)
pima_res <- tune_grid(pima_wflow, resamples = pima_rs, metrics = roc_vals)
# ------------------------------------------------------------------------------
rs_estimates <- summarize(pima_res)
ggplot(rs_estimates, aes(x = cost_complexity, y = min_n, col = mean, size = mean)) +
geom_point() +
scale_x_log10()
best_vals <-
rs_estimates %>%
arrange(desc(mean)) %>%
slice(1:2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.