See below for the source code to generate the Chicago Features example workflow sets:
library(workflowsets) library(workflows) library(modeldata) library(recipes) library(parsnip) library(dplyr) library(rsample) library(tune) library(yardstick) library(dials) # ------------------------------------------------------------------------------ # Slightly smaller data size data(Chicago) Chicago <- Chicago[1:1195,] time_val_split <- sliding_period( Chicago, date, "month", lookback = 38, assess_stop = 1 ) # ------------------------------------------------------------------------------ base_recipe <- recipe(ridership ~ ., data = Chicago) |> # create date features step_date(date) |> step_holiday(date) |> # remove date from the list of predictors update_role(date, new_role = "id") |> # create dummy variables from factor columns step_dummy(all_nominal()) |> # remove any columns with a single unique value step_zv(all_predictors()) |> step_normalize(all_predictors()) date_only <- recipe(ridership ~ ., data = Chicago) |> # create date features step_date(date) |> update_role(date, new_role = "id") |> # create dummy variables from factor columns step_dummy(all_nominal()) |> # remove any columns with a single unique value step_zv(all_predictors()) date_and_holidays <- recipe(ridership ~ ., data = Chicago) |> # create date features step_date(date) |> step_holiday(date) |> # remove date from the list of predictors update_role(date, new_role = "id") |> # create dummy variables from factor columns step_dummy(all_nominal()) |> # remove any columns with a single unique value step_zv(all_predictors()) date_and_holidays_and_pca <- recipe(ridership ~ ., data = Chicago) |> # create date features step_date(date) |> step_holiday(date) |> # remove date from the list of predictors update_role(date, new_role = "id") |> # create dummy variables from factor columns step_dummy(all_nominal()) |> # remove any columns with a single unique value step_zv(all_predictors()) |> step_pca(!!stations, num_comp = tune()) # ------------------------------------------------------------------------------ lm_spec <- linear_reg() |> set_engine("lm") # ------------------------------------------------------------------------------ pca_param <- parameters(num_comp()) |> update(num_comp = num_comp(c(0, 20))) # ------------------------------------------------------------------------------ chi_features_set <- workflow_set( preproc = list(date = date_only, plus_holidays = date_and_holidays, plus_pca = date_and_holidays_and_pca), models = list(lm = lm_spec), cross = TRUE ) # ------------------------------------------------------------------------------ chi_features_res <- chi_features_set |> option_add(param_info = pca_param, id = "plus_pca_lm") |> workflow_map(resamples = time_val_split, grid = 21, seed = 1, verbose = TRUE)
save(chi_features_set, chi_features_res, file = "data/chi_features_set.rda", version = 2, compress = "xz")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.