Dans ce document de travail, on vérifiera les points suivants sur les simulations PRSIM:
Pour commencer, regardons à Dozois.
library(plotly) library(readr) #Scenario de Q10000 a Dozois dans l'etude de l'Outaouais Superieur (2019) path<-'/home/tito/Documents/github/prsim/outaouais_sup_lynda/Frequentielles/Apports_Lateraux_Methode_Extreme_prt/Q10000/' fichiers<-list.files(path,pattern = '.csv') Q10000_etude2019<-read_csv(paste0(path,fichiers[1])) jours_etude_2019<-seq(as.Date("2000/1/3"), as.Date("2000/1/3")+212, by = "day") #le scenario choisi pour Dozois etait l'annee #Statistiques sommaires des series prsim require(sparklyr) require(dplyr) require(tidyr) bvs<-list.files('/media/tito/TIIGE/PRSIM/0.9995/bv_csv/') path<-'/media/tito/TIIGE/PRSIM/0.9995/' for(bv in bvs){ config <- spark_config() config$`sparklyr.shell.driver-memory` <- "4G" config$`sparklyr.shell.executor-memory` <- "4G" config$`spark.yarn.executor.memoryOverhead` <- "512" config$`sparklyr.cores.local` <- 6 # Connect to local cluster with custom configuration sc <- spark_connect(master = "local", config = config) spec_with_r <- sapply(read.csv('/media/tito/TIIGE/PRSIM/0.9995/bv_csv/Dozois/1-Dozois-r1.csv', nrows = 1), class) #lecture en lazy loading des 170 000 simulations de prsim start_time = Sys.time() testo<-spark_read_csv(sc = sc,path = paste0('/media/tito/TIIGE/PRSIM/0.9995/bv_csv/',bv,'/'),columns=spec_with_r,memory = FALSE) end_time = Sys.time() end_time - start_time df_mean_per_julian_day = testo %>% group_by(julian_day) %>% summarise(AvgQ=mean(value,na.rm = TRUE))%>% collect() df_max_per_julian_day = testo %>% group_by(julian_day) %>% summarise(MaxQ=max(value,na.rm = TRUE))%>% collect() df_min_per_julian_day = testo %>% group_by(julian_day) %>% summarise(MinQ=min(value,na.rm = TRUE))%>% collect() df1<-merge(df_mean_per_julian_day,df_max_per_julian_day) df_final<-merge(df1,df_min_per_julian_day) filename<-paste0('/home/tito/',bv,'.Rdata') save(df_final, file = filename) spark_disconnect(sc) } x <- jours_etude_2019 y <-Q10000_etude2019$Dozois data <- data.frame(x, y) fig <- plot_ly(data, x = ~x, y = ~y, type = 'scatter', mode = 'lines') fig
La seconde partie de cette analyse traitera de la fonction d'auto-corrélation (ACF) entre les bassins composant le grand bassin versant des Outaouais.
Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.
When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).
The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.