Description Usage Arguments Details Value Examples
1 2 3 4 5 |
x |
some data |
example |
Which example data to use (by position or name). Defaults to 1. |
Part One
There\'s not much to do as you slowly descend to the bottom of the ocean. The submarine computer [challenges you to a nice game]title="A STRANGE GAME." of Dirac Dice.
This game consists of a single
die, two
pawns,
and a game board with a circular track containing ten spaces marked 1
through 10
clockwise. Each player\'s starting space is chosen
randomly (your puzzle input). Player 1 goes first.
Players take turns moving. On each player\'s turn, the player rolls the
die three times and adds up the results. Then, the player moves their
pawn that many times forward around the track (that is, moving
clockwise on spaces in order of increasing value, wrapping back around
to 1
after 10
). So, if a player is on space 7
and they roll 2
,
2
, and 1
, they would move forward 5 times, to spaces 8
, 9
, 10
,
1
, and finally stopping on 2
.
After each player moves, they increase their score by the value of the
space their pawn stopped on. Players\' scores start at 0
. So, if the
first player starts on space 7
and rolls a total of 5
, they would
stop on space 2
and add 2
to their score (for a total score of 2
).
The game immediately ends as a win for any player whose score reaches
at least 1000
.
Since the first game is a practice game, the submarine opens a
compartment labeled deterministic dice and a 100-sided die falls out.
This die always rolls 1
first, then 2
, then 3
, and so on up to
100
, after which it starts over at 1
again. Play using this die.
For example, given these starting positions:
1 2 | Player 1 starting position: 4
Player 2 starting position: 8
|
This is how the game would go:
Player 1 rolls 1
+2
+3
and moves to space 10
for a total score
of 10
.
Player 2 rolls 4
+5
+6
and moves to space 3
for a total score
of 3
.
Player 1 rolls 7
+8
+9
and moves to space 4
for a total score
of 14
.
Player 2 rolls 10
+11
+12
and moves to space 6
for a total
score of 9
.
Player 1 rolls 13
+14
+15
and moves to space 6
for a total
score of 20
.
Player 2 rolls 16
+17
+18
and moves to space 7
for a total
score of 16
.
Player 1 rolls 19
+20
+21
and moves to space 6
for a total
score of 26
.
Player 2 rolls 22
+23
+24
and moves to space 6
for a total
score of 22
.
\...after many turns\...
Player 2 rolls 82
+83
+84
and moves to space 6
for a total
score of 742
.
Player 1 rolls 85
+86
+87
and moves to space 4
for a total
score of 990
.
Player 2 rolls 88
+89
+90
and moves to space 3
for a total
score of 745
.
Player 1 rolls 91
+92
+93
and moves to space 10
for a final
score, 1000
.
Since player 1 has at least 1000
points, player 1 wins and the game
ends. At this point, the losing player had 745
points and the die had
been rolled a total of 993
times; 745 * 993 = 739785
.
Play a practice game using the deterministic 100-sided die. The moment either player wins, what do you get if you multiply the score of the losing player by the number of times the die was rolled during the game?
Part Two
Now that you\'re warmed up, it\'s time to play the real game.
A second compartment opens, this time labeled Dirac dice. Out of it falls a single three-sided die.
As you experiment with the die, you feel a little strange. An
informational brochure in the compartment explains that this is a
quantum die: when you roll it, the universe splits into multiple
copies, one copy for each possible outcome of the die. In this case,
rolling the die always splits the universe into three copies: one
where the outcome of the roll was 1
, one where it was 2
, and one
where it was 3
.
The game is played the same as before, although to prevent things from
getting too far out of hand, the game now ends when either player\'s
score reaches at least 21
.
Using the same starting positions as in the example above, player 1 wins
in 444356092776315
universes, while player 2 merely wins in
341960390180808
universes.
Using your given starting positions, determine every possible outcome. Find the player that wins in more universes; in how many universes does that player win?
For Part One, f21a_play_deterministic_game(x)
returns the product
of the losing player's score and the total number of rolls. For Part Two,
f21b_play_quantum_game(x)
returns the total win counts for each player.
1 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.