mnlogit | R Documentation |
Bayesian logit model with Pólya Gamma prior with MCMC
mnlogit(
X,
Y,
baseline = ncol(Y),
niter = 1000,
nburn = 500,
A0 = 10^4,
calc_marginal_fx = FALSE
)
X |
An n by k matrix of explanatory variables |
Y |
An n by p matrix of dependent variables |
baseline |
Baseline class for estimation. Parameters will be set to zero. Defaults to the p-th column. |
niter |
Total number of MCMC draws. Defaults to 1000. |
nburn |
Burn-in draws for MCMC. Note: |
A0 |
Prior variance scalar for all slope coefficients |
calc_marginal_fx |
Should marginal effects be calculated? Defaults to |
MCMC estimation of a multinomial logit model following Polson et al. (2013).
A list containing
postb
A k x p x (niter - nburn dimensions) array containing posterior draws of the slope coefficients.
marginal_fx
A k x p x (niter - nburn dimensions) array containing posterior draws of marginal effects.
X, Y, baseline
The matrices of explanatory and dependent variables, as defined above and the baseline class.
Nicholas G. Polson, James G. Scott, and Jesse Windle. Bayesian inference for logistic models using Polya-Gamma latent variables. Journal of the American statistical Association 108.504 (2013): 1339-1349.
n <- 100
p <- 3
k <- 2
X <- cbind(1, matrix(rnorm(n * (k - 1), 0, 2), n, k - 1))
BETA <- matrix(sample(c(-3:3), k * p, replace = TRUE), k, p)
BETA[, p] <- 0
Y <- exp(X %*% BETA) / rowSums(exp(X %*% BETA))
res1 <- mnlogit(X, Y)
print(BETA)
print(apply(res1$postb, c(1, 2), mean))
require(tidyr)
Y = dplyr::filter(argentina_luc,lu.from == "Cropland" & Ts == 2000) %>%
pivot_wider(names_from = lu.to)
X = argentina_df$xmat %>% tidyr::pivot_wider(names_from = "ks") %>%
dplyr::arrange(match(ns,Y$ns))
Y = Y %>% dplyr::select(-c(lu.from,Ts,ns))
X = X %>% dplyr::select(-c(ns))
res1 <- mnlogit(as.matrix(X), as.matrix(Y),baseline = which(colnames(Y) == "Cropland"),
niter = 100,nburn = 50)
print(apply(res1$postb, c(1, 2), mean))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.