plot.dfunc | R Documentation |
Plot method for objects of class 'dfunc
'. Objects of
class 'dfunc
' are estimated distance functions produced by
dfuncEstim
.
## S3 method for class 'dfunc'
plot(x, ...)
x |
An estimated detection function object, normally
produced by calling |
... |
Arguments passed on to
|
If plotBars
is TRUE, a scaled histogram is plotted
and the estimated distance function
is plotted over the top of it. When bars are plotted,
this routine uses graphics::barplot
for setting up the initial plotting region and
most parameters to graphics::barplot
can
be specified (exceptions noted above in description of '...').
The form of the likelihood and any series
expansions is printed in the main title (overwrite this with
main="<my title>"
). Convergence of the distance
function is checked. If the distance function did not converge, a warning
is printed over the top of the histogram. If one or more parameter
estimates are at their limits (likely indicating non-convergence or poor
fit), another warning is printed.
The input distance function is returned, with two additional
components than can be used to reconstruct the plotted bars. (To
obtain values of the plotted distance functions, use predict
with type = "distances"
.)
The additional components are:
barHeights |
A vector containing the scaled bar heights drawn on the plot. |
barWidths |
A vector or scalar of the bar widths drawn on the plot, with measurement units. |
Re-plot the bars with barplot( return$barHeights,
width = return$barWidths )
.
dfuncEstim
, print.dfunc
,
print.abund
set.seed(87654)
x <- rnorm(1000, mean=0, sd=20)
x <- x[x >= 0]
x <- units::set_units(x, "ft")
Df <- data.frame(transectID = "A"
, distance = x
) |>
dplyr::nest_by( transectID
, .key = "detections") |>
dplyr::mutate(length = units::set_units(1,"mi"))
attr(Df, "detectionColumn") <- "detections"
attr(Df, "obsType") <- "single"
attr(Df, "transType") <- "line"
attr(Df, "effortColumn") <- "length"
is.RdistDf(Df) # TRUE
dfunc <- Df |> dfuncEstim(distance ~ 1, likelihood="halfnorm")
plot(dfunc)
plot(dfunc, nbins=25)
# showing effects of plot params
plot(dfunc
, col=c("red","blue","orange")
, border="black"
, xlab="Off-transect distance"
, ylab="Prob"
, vertLines = FALSE
, main="Showing plot params")
plot(dfunc
, col="purple"
, density=30
, angle=c(-45,0,45)
, cex.axis=1.5
, cex.lab=2
, ylab="Probability")
plot(dfunc
, col=c("grey","lightgrey")
, border=NA)
plot(dfunc
, col="grey"
, border=0
, col.dfunc="blue"
, lty.dfunc=2
, lwd.dfunc=4
, vertLines=FALSE)
plot(dfunc
, plotBars=FALSE
, cex.axis=1.5
, col.axis="blue")
rug(distances(dfunc))
# Plot showing f(0)
hist(distances(dfunc)
, n = 40
, border = NA
, prob = TRUE)
x <- seq(dfunc$w.lo, dfunc$w.hi, length=200)
g <- predict(dfunc, type="dfunc", distances = x, newdata = data.frame(a=1))
f <- g[,1] / ESW(dfunc)[1]
# Check integration:
sum(diff(x)*(f[-1] + f[-length(f)]) / 2) # Trapazoid rule; should be 1.0
lines(x, f) # hence, 1/f(0) = ESW
# Covariates: detection by observer
data(sparrowDfuncObserver) # pre-estimated model
obsLevs <- levels(sparrowDfuncObserver$data$observer)
plot(sparrowDfuncObserver
, newdata = data.frame(observer = obsLevs)
, vertLines = FALSE
, col.dfunc = heat.colors(length(obsLevs))
, col = c("grey","lightgrey")
, border=NA
, main="Detection by observer")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.