View source: R/BiCopHfuncDeriv2.R
| BiCopHfuncDeriv2 | R Documentation |
This function evaluates the second derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) and/or its arguments.
BiCopHfuncDeriv2(
u1,
u2,
family,
par,
par2 = 0,
deriv = "par",
obj = NULL,
check.pars = TRUE
)
u1, u2 |
numeric vectors of equal length with values in |
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
integer; single number or vector of size |
deriv |
Derivative argument |
obj |
|
check.pars |
logical; default is |
If the family and parameter specification is stored in a BiCop()
object obj, the alternative version
BiCopHfuncDeriv2(u1, u2, obj, deriv = "par")
can be used.
A numeric vector of the second-order conditional bivariate copula derivative
of the copula family
with parameter(s) par, par2
with respect to deriv
evaluated at u1 and u2.
Ulf Schepsmeier, Jakob Stoeber
Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher
information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.
RVineGrad(), RVineHessian(),
BiCopDeriv(), BiCopDeriv2(),
BiCopHfuncDeriv(), BiCop()
## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)
## second derivative of the conditional bivariate t-copula
## with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopHfuncDeriv2(u1, u2, cop, deriv = "par")
## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate the derivative of the conditional copula
## w.r.t. the second argument u2
BiCopHfuncDeriv2(u1, u2, cop, deriv = "u2")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.