Description Usage Arguments Examples
View source: R/wordly_functions.R
Allows for modeling of Natural Language Processing (NLP) data using the xgboost package. Default param values are optimized for NLP.
1 2 3 4 | prepare_xgboost_model(train_data, dtm_train_data, response_label_name,
xgb_objective, xgb_nrounds = 100, xgb_max_depth = 20,
xgb_eta = 0.1, xgb_nthread = 4, xgb_weight = NULL,
xgb_missing = NA)
|
train_data |
The NON-DTM training input data. |
dtm_train_data |
The DTM training input data. Returned from prepare_dtm(). |
response_label_name |
The name of the column in dat_in containing the text source. |
xgb_objective |
The xgboost parameter for objective (see xgboost documentation). One of "reg:linear", "binary:logistic", etc. |
xgb_nrounds |
The xgboost parameter for nrounds (see xgboost documentation). Defaults to 100. |
xgb_max_depth |
The xgboost parameter for max_depth (see xgboost documentation). Defaults to 20. |
xgb_eta |
The xgboost parameter for eta (see xgboost documentation). Defaults to 0.1. |
xgb_nthread |
The xgboost parameter for nthreads (see xgboost documentation). Defaults to 4. |
xgb_weight |
The xgboost parameter for weight (see xgboost documentation). Defaults to NULL. |
xgb_missing |
The xgboost parameter for missing (see xgboost documentation). Defaults to NA. |
1 | xgb_mod <- prepare_xgboost_model(train_, dtm_train, "product_review", xgb_objective = "binary:logistic")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.