View source: R/cal-estimate-isotonic.R
cal_estimate_isotonic | R Documentation |
Uses an Isotonic regression model to calibrate model predictions.
cal_estimate_isotonic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...
)
## S3 method for class 'data.frame'
cal_estimate_isotonic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...,
.by = NULL
)
## S3 method for class 'tune_results'
cal_estimate_isotonic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...
)
## S3 method for class 'grouped_df'
cal_estimate_isotonic(
.data,
truth = NULL,
estimate = NULL,
parameters = NULL,
...
)
.data |
An ungrouped |
truth |
The column identifier for the true class results (that is a factor). This should be an unquoted column name. |
estimate |
A vector of column identifiers, or one of |
parameters |
(Optional) An optional tibble of tuning parameter values
that can be used to filter the predicted values before processing. Applies
only to |
... |
Additional arguments passed to the models or routines used to calculate the new probabilities. |
.by |
The column identifier for the grouping variable. This should be
a single unquoted column name that selects a qualitative variable for
grouping. Default to |
This function uses stats::isoreg()
to create obtain the calibration
values for binary classification or numeric regression.
This method is designed to work with two classes. For multiclass, it creates a set of "one versus all" calibrations for each class. After they are applied to the data, the probability estimates are re-normalized to add to one. This final step might compromise the calibration.
Zadrozny, Bianca and Elkan, Charles. (2002). Transforming Classifier Scores into Accurate Multiclass Probability Estimates. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
https://www.tidymodels.org/learn/models/calibration/,
cal_validate_isotonic()
# ------------------------------------------------------------------------------
# Binary Classification
# It will automatically identify the probability columns
# if passed a model fitted with tidymodels
cal_estimate_isotonic(segment_logistic, Class)
# Specify the variable names in a vector of unquoted names
cal_estimate_isotonic(segment_logistic, Class, c(.pred_poor, .pred_good))
# dplyr selector functions are also supported
cal_estimate_isotonic(segment_logistic, Class, dplyr::starts_with(".pred_"))
# ------------------------------------------------------------------------------
# Regression (numeric outcomes)
cal_estimate_isotonic(boosting_predictions_oob, outcome, .pred)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.