Xsurv.cv: This function can use cv to automatically tuning the paramter...

View source: R/Xsurv.cv.R

Xsurv.cvR Documentation

This function can use cv to automatically tuning the paramter to fit the survival model for xgboost and lightgbm.

Description

This function can use cv to automatically tuning the paramter to fit the survival model for xgboost and lightgbm.

Usage

Xsurv.cv(
  datax,
  datay,
  top_n = NULL,
  option = c("defaut", "xgb", "lgb", "gbm", "rf"),
  method = c("defaut", "pl", "C"),
  search = c("rd", "grid"),
  nfolds = 5,
  cvfrac = 0.8,
  rdtime = 10,
  nround = NULL,
  Lambda = NULL,
  Alpha = NULL,
  Eta = NULL,
  early_stopping_rounds = NULL,
  cp = NULL,
  maxdpth = NULL
)

Arguments

datax

X data set

datay

Y data set including time and event status

top_n

number of top features for survival tree fitting

option

model fitting option,defaut is xgb

method

fitting metohd,defaut is 'pl' means using loss function:coxph likelihood

nfolds

number of folds for crossvalidation

early_stopping_rounds

force a stopping round

number

of rounds

lambda

l1 penalty parameter

alpha

l2 penalty parameter

eta

learning rate

Value

a list object containing:model,cindex,tree,SHAP and risk

Examples

#example
library(survival)
library(Xsurv)
data(lung)

mydata<-(lung[,-1])
mydata[,2]<-mydata[,2]-1
length(mydata[,1])
names(mydata)<-colnames(mydata)
datay_train<-mydata[1:180,c(1,2)]
datax_train<-mydata[1:180,-c(1,2)]
datay_test<-mydata[181:228,c(1,2)]
datax_test<-mydata[181:228,-c(1,2)]
xs<-Xsurv(datax_train,datay_train,top_n = 5,cp=0.01)

#xs<-Xsurv.cv(datax_train,datay_train,top_n=5)
xm<-xs$model
xtree<-xs$tree
x_ctree<-xtree$tree2
#plot(x_ctree)
shap=xs$SHAP

shap

risk=xs$risk
fit=risk$fit

#plot(fit)
#prediction

pre_time<-pre<-Xsurv_predict(xm,datax_train,datay_train,datax_test)

#predict survival probabilty

pre_x<-Xsurv_predict_sv(xm,datax_train,datay_train,datax_test[1,])

plot(pre_x)


topycyao/Xsurv documentation built on Aug. 6, 2022, 9:06 p.m.