.point_est.wtd | R Documentation |
Internal functions to be called within estimate_\*
to obtain the point estimate of effects.
.point_est.wtd(
data,
cross.world,
effect.scale,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
output.data = FALSE
)
.point_est.psYpred(
data,
cross.world,
effect.scale,
a.c.form,
max.stabilized.wt = 30,
output.data = FALSE,
y.c1.form,
y.c0.form,
y.cm1.form,
y.cm0.form,
y.family
)
.point_est.psYpredMR(
data,
cross.world,
effect.scale,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
output.data = FALSE,
y.c1.form,
y.c0.form,
y.cm1.form,
y.cm0.form,
y.family
)
.point_est.Ypred(
data,
cross.world,
effect.scale,
a.cm.form,
max.stabilized.wt = 30,
output.data = FALSE,
y.c1.form,
y.c0.form,
y10.c.form = NULL,
y01.c.form = NULL,
y.family
)
.point_est.YpredMR(
data,
cross.world,
effect.scale,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
output.data = FALSE,
y.c1.form,
y.c0.form,
y10.c.form = NULL,
y01.c.form = NULL,
y.family
)
.point_est.Y2pred(
data,
cross.world,
effect.scale,
y.c1.form,
y.c0.form,
y.cm1.form,
y.cm0.form,
y10.c.form,
y01.c.form,
y.family,
output.data = FALSE
)
.point_est.Y2predR(
data,
cross.world,
effect.scale,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
output.data = FALSE,
y.c1.form,
y.c0.form,
y.cm1.form,
y.cm0.form,
y10.c.form,
y01.c.form,
y.family
)
.point_est.NDEpred(
data,
cross.world,
y.c1.form,
y.c0.form,
y.cm1.form,
y.cm0.form,
nde0.c.form,
nde1.c.form,
y.family,
output.data = FALSE
)
.point_est.MsimYpred(
data,
cross.world,
effect.scale,
m.vars,
m.c1.form,
m.c0.form,
m.family,
y.c1.form,
y.c0.form,
y.cm1.form,
y.cm0.form,
y.family,
output.data = FALSE,
boot = FALSE,
point.reps = 100
)
.point_est.wtCadj(
data,
cross.world,
effect.scale,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
output.data = FALSE,
wkng.form,
y.family
)
.point_est.wpCadj(
data,
cross.world,
effect.scale,
a.c.form,
max.stabilized.wt = 30,
output.data = FALSE,
y.cm1.form,
y.cm0.form,
wkng.form,
y.family
)
.point_est.MsimYpredMR(
data,
cross.world,
effect.scale,
a.c.form,
a.cm.form,
max.stabilized.wt,
m.vars,
m.c1.form,
m.c0.form,
m.family,
y.c1.form,
y.c0.form,
y.cm1.form,
y.cm0.form,
y.family,
output.data = FALSE,
boot = FALSE,
point.reps = 100
)
.point_est.wpMRCadj(
data,
cross.world,
effect.scale,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
output.data = FALSE,
y.cm1.form,
y.cm0.form,
wkng.form,
y.family
)
.point_est.NDEpredR(
data,
cross.world,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
output.data = FALSE,
y.c1.form,
y.c0.form,
y.cm1.form,
y.cm0.form,
nde0.c.form,
nde1.c.form,
y.family
)
data |
A dataset that has been prepared to have the sampling with variable named s.wt (e.g., using function |
cross.world |
Three options: "10", "01" or c("10", "01"). |
effect.scale |
Three options: "MD", "MR", "OR". |
a.c.form |
Formula for the P(A|C) model (the propensity score model). |
a.cm.form |
Formula for the P(A|C,M) model. |
max.stabilized.wt |
Max stabilized weight allowed. Larger weights are truncated to this level. Default is 30. |
output.data |
Whether to output the weighted data in addition to the estimated potential outcome means and effects. Defaults to FALSE. |
y.c1.form, y.c0.form |
Model formulas for E[Y|C,A=1], E[Y|C,A=0], checked. |
y.cm1.form, y.cm0.form |
Model formulas for E[Y|C,M,A=1], E[Y|C,M,A=0], checked. |
y.family |
GLM (quasi-) family for outcome models. |
y10.c.form, y01.c.form |
Model formulas for E[Y(1,M0)|C] and E[Y(0,M1)|C]. |
wkng.form |
Formula for working regression model |
If plot==FALSE
, effect estimates (numeric vector). If plot==TRUE
, a list including this vector of effect estimates and the weight distribution and mean balance plots.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.