dot-point_est: (For maintainer) Point estimation

.point_est.wtdR Documentation

(For maintainer) Point estimation

Description

Internal functions to be called within estimate_\* to obtain the point estimate of effects.

Usage

.point_est.wtd(
  data,
  cross.world,
  effect.scale,
  a.c.form,
  a.cm.form,
  max.stabilized.wt = 30,
  output.data = FALSE
)

.point_est.psYpred(
  data,
  cross.world,
  effect.scale,
  a.c.form,
  max.stabilized.wt = 30,
  output.data = FALSE,
  y.c1.form,
  y.c0.form,
  y.cm1.form,
  y.cm0.form,
  y.family
)

.point_est.psYpredMR(
  data,
  cross.world,
  effect.scale,
  a.c.form,
  a.cm.form,
  max.stabilized.wt = 30,
  output.data = FALSE,
  y.c1.form,
  y.c0.form,
  y.cm1.form,
  y.cm0.form,
  y.family
)

.point_est.Ypred(
  data,
  cross.world,
  effect.scale,
  a.cm.form,
  max.stabilized.wt = 30,
  output.data = FALSE,
  y.c1.form,
  y.c0.form,
  y10.c.form = NULL,
  y01.c.form = NULL,
  y.family
)

.point_est.YpredMR(
  data,
  cross.world,
  effect.scale,
  a.c.form,
  a.cm.form,
  max.stabilized.wt = 30,
  output.data = FALSE,
  y.c1.form,
  y.c0.form,
  y10.c.form = NULL,
  y01.c.form = NULL,
  y.family
)

.point_est.Y2pred(
  data,
  cross.world,
  effect.scale,
  y.c1.form,
  y.c0.form,
  y.cm1.form,
  y.cm0.form,
  y10.c.form,
  y01.c.form,
  y.family,
  output.data = FALSE
)

.point_est.Y2predR(
  data,
  cross.world,
  effect.scale,
  a.c.form,
  a.cm.form,
  max.stabilized.wt = 30,
  output.data = FALSE,
  y.c1.form,
  y.c0.form,
  y.cm1.form,
  y.cm0.form,
  y10.c.form,
  y01.c.form,
  y.family
)

.point_est.NDEpred(
  data,
  cross.world,
  y.c1.form,
  y.c0.form,
  y.cm1.form,
  y.cm0.form,
  nde0.c.form,
  nde1.c.form,
  y.family,
  output.data = FALSE
)

.point_est.MsimYpred(
  data,
  cross.world,
  effect.scale,
  m.vars,
  m.c1.form,
  m.c0.form,
  m.family,
  y.c1.form,
  y.c0.form,
  y.cm1.form,
  y.cm0.form,
  y.family,
  output.data = FALSE,
  boot = FALSE,
  point.reps = 100
)

.point_est.wtCadj(
  data,
  cross.world,
  effect.scale,
  a.c.form,
  a.cm.form,
  max.stabilized.wt = 30,
  output.data = FALSE,
  wkng.form,
  y.family
)

.point_est.wpCadj(
  data,
  cross.world,
  effect.scale,
  a.c.form,
  max.stabilized.wt = 30,
  output.data = FALSE,
  y.cm1.form,
  y.cm0.form,
  wkng.form,
  y.family
)

.point_est.MsimYpredMR(
  data,
  cross.world,
  effect.scale,
  a.c.form,
  a.cm.form,
  max.stabilized.wt,
  m.vars,
  m.c1.form,
  m.c0.form,
  m.family,
  y.c1.form,
  y.c0.form,
  y.cm1.form,
  y.cm0.form,
  y.family,
  output.data = FALSE,
  boot = FALSE,
  point.reps = 100
)

.point_est.wpMRCadj(
  data,
  cross.world,
  effect.scale,
  a.c.form,
  a.cm.form,
  max.stabilized.wt = 30,
  output.data = FALSE,
  y.cm1.form,
  y.cm0.form,
  wkng.form,
  y.family
)

.point_est.NDEpredR(
  data,
  cross.world,
  a.c.form,
  a.cm.form,
  max.stabilized.wt = 30,
  output.data = FALSE,
  y.c1.form,
  y.c0.form,
  y.cm1.form,
  y.cm0.form,
  nde0.c.form,
  nde1.c.form,
  y.family
)

Arguments

data

A dataset that has been prepared to have the sampling with variable named s.wt (e.g., using function .clean_inputs_generic().

cross.world

Three options: "10", "01" or c("10", "01").

effect.scale

Three options: "MD", "MR", "OR".

a.c.form

Formula for the P(A|C) model (the propensity score model).

a.cm.form

Formula for the P(A|C,M) model.

max.stabilized.wt

Max stabilized weight allowed. Larger weights are truncated to this level. Default is 30.

output.data

Whether to output the weighted data in addition to the estimated potential outcome means and effects. Defaults to FALSE.

y.c1.form, y.c0.form

Model formulas for E[Y|C,A=1], E[Y|C,A=0], checked.

y.cm1.form, y.cm0.form

Model formulas for E[Y|C,M,A=1], E[Y|C,M,A=0], checked.

y.family

GLM (quasi-) family for outcome models.

y10.c.form, y01.c.form

Model formulas for E[Y(1,M0)|C] and E[Y(0,M1)|C].

wkng.form

Formula for working regression model

Value

If plot==FALSE, effect estimates (numeric vector). If plot==TRUE, a list including this vector of effect estimates and the weight distribution and mean balance plots.


trangnguyen74/mediationClarity documentation built on May 4, 2023, 6:22 a.m.