Description Usage Arguments Details
View source: R/mxPenaltyFunctions.R
Elastic net regularization
1 2 3 4 5 6 7 8 9 10 11 12  | mxRegularizeElasticNet(
  what,
  name,
  alpha = 0,
  alpha.step = 0.1,
  alpha.max = 1,
  lambda = 0,
  lambda.step = 0.1,
  lambda.max = 0.4,
  alpha.min = NA,
  lambda.min = NA
)
 | 
what | 
 A list of parameters to regularize  | 
name | 
 Name of the regularizer object  | 
alpha | 
 strength of the mixing parameter to be applied at start (default 0.5). Note that 0 indicates a ridge regression with penalty lambda / 2 , and 1 indicates a LASSO regression with penalty lambda.  | 
alpha.step | 
 alpha step during penalty search (default 0.1)  | 
alpha.max | 
 when to end the alpha search (default 1)  | 
lambda | 
 strength of the penalty to be applied at starting values (default 0)  | 
lambda.step | 
 step function for lambda step (default .01)  | 
lambda.max | 
 end of lambda range (default .4)  | 
alpha.min | 
 beginning of the alpha range (default 0)  | 
lambda.min | 
 beginning of the lambda range (default lambda)  | 
Applies elastic net regularization. Elastic net is a weighted combination of ridge and LASSO penalties.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.