library(magrittr) library(ggplot2) devtools::load_all('../') THEME_BASE_SIZE = 13
NGENES = 4000 NSAMPLES = 30 NREFS = 2000 REPEATS = 1:30 k = 1 - (NREFS / NGENES) sims_c <- lapply(REPEATS, function(i) { simulate.counts.varyingfc(ngenes = NGENES, nlibs1 = NSAMPLES %/% 2, nlibs2= NSAMPLES - (NSAMPLES %/% 2), percentDE = k) }) %>% set_names(REPEATS) sims_c.ref <- lapply(REPEATS, function(i) { # refs <- which(sim$differential == 0) # difs <- which(sim$differential == 1) # sim.cnt = sim$counts # sim.normed = normalize.by.refs(sim$counts, refs) sim = sims_c[[i]] normalize.by.refs(sim$counts, which(sim$differential == 0)) }) %>% set_names(REPEATS)
Relative abundance is equivalent to the fraction of mapped reads.
sims_c.rel_abundance = lapply(REPEATS,function(i) { sim = sims_c[[i]] data.frame('sum_relative_abundance' = colSums(sim$counts[which(sim$differential == 0),]) / colSums(sim$counts), 'sample' = 1:NSAMPLES, 'condition' = sim$conditions$condition, 'run' = i) }) %>% do.call(rbind, .)
ggplot(sims_c.rel_abundance) + facet_wrap('run') + geom_boxplot(aes(x=condition,y=sum_relative_abundance)) i = sample(REPEATS,size = 1) p1 = ggplot(sims_c.rel_abundance[sims_c.rel_abundance$run==i,]) + geom_boxplot(aes(x=condition,y=sum_relative_abundance)) + ylab('Fraction of reference counts') + xlab('Simulated condition') + ggtitle(sprintf('Sum of relative abundance\nof non-DE genes in simulation,\nequivalent to fraction \nof mapped reads of spike-ins')) + theme_bw(base_size = THEME_BASE_SIZE) ggsave(filename = 'compositional_abundance.png', plot = p1, width = 4,height = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.