inconMore
is an R library that supplements simultaneous consonance
perception datasets originally provided by Peter Harrison’s wonderful
incon
library available at https://github.com/pmcharrison/incon.
incon contains a range of roughness and harmonicity models and some
perceptual datasets. Here we offer extra datasets.
You can install the current version of inconMore
from Github by
entering the following commands into R:
if (!require(devtools)) install.packages("devtools")
devtools::install_github("tuomaseerola/inconMore")
Currently the following datasets are implemented:
| dataset | Stimulus N | Study | |:--------|:-----------|:------------------------------------| | art18 | 12 | Arthurs et al., 2018 | | pop19 | 80 | Popescu et al., 2019 | | lah20a | 25 | Lahdelma & Eerola 2020 (Exp. 1) | | lah20b | 72 | Lahdelma & Eerola 2020 (Exp. 2) | | bowl18 | 298 | Bowling et al., 2018 | | jl12a | 55 | Johnson-Laird et al., 2012 (Exp. 1) | | jl12b | 48 | Johnson-Laird et al., 2012 (Exp. 2) | | sch03 | 12 | Schwartz et al., 2003 | | lah16 | 15 | Lahdelma & Eerola, 2016 |
The primary function is inconMore
, which contains several datasets.
library(inconMore)
data <- inconMore::art18 # Arthurs and Timmers 2018
knitr::kable(head(data))
| dataset | name | id | rating | pi_chord | chord_size | |:--------|:-------|:----|-------:|:---------------|------------:| | art18 | Major | c1 | 5.7 | 60, 64, 67 | 3 | | art18 | Minor | c2 | 4.8 | 60, 63, 67 | 3 | | art18 | Dim | c3 | 4.3 | 60, 63, 66 | 3 | | art18 | Aug | c4 | 3.7 | 60, 64, 68 | 3 | | art18 | Sus | c5 | 5.0 | 60, 65, 67 | 3 | | art18 | Major7 | c6 | 4.5 | 60, 64, 67, 71 | 4 |
See the package’s inbuilt documentation, ?inconMore
, for further
details.
library(inconMore)
library(hrep)
library(incon)
chord <- hrep::pi_chord(inconMore::art18$pi_chord[[1]]) # major
incon(chord,model = 'hutch_78_roughness')
#> hutch_78_roughness
#> 0.1202426
chord <- hrep::pi_chord(inconMore::art18$pi_chord[[3]]) # diminished
incon(chord,model = 'hutch_78_roughness')
#> hutch_78_roughness
#> 0.2005575
Eerola, T. & Lahdelma, I. (2021). More data for Computational Models of Simultaneous Consonance.
Arthurs, Y., Beeston, A. V., & Timmers, R. (2018). Perception of isolated chords: Examining frequency of occurrence, instrumental timbre, acoustic descriptors and musical training. Psychology of Music, 46(5), 662–681.
Bowling, D. L., Purves, D., & Gill, K. Z. (2018). Vocal similarity predicts the relative attraction of musical chords. Proceedings of the National Academy of Sciences, 115(1), 216–221. https://doi.org/10.1073/pnas.1713206115
Johnson-Laird, P. N., Kang, O. E., & Leong, Y. C. (2012). On musical dissonance. Music Perception: An Interdisciplinary Journal, 30(1), 19-35. https://doi.org/10.1525/mp.2012.30.1.19
Lahdelma, I. & Eerola, T. (2016). Mild dissonance preferred over consonance in single chord perception. i-Perception, 7(3), 1-21. https://doi.org/10.1177/2041669516655812
Lahdelma, I. & Eerola, T. (2020). Cultural familiarity and musical expertise impact the pleasantness of consonance/dissonance but not its perceived tension. Scientific Reports(10), 8693. https://doi.org/10.1038/s41598-020-65615-8
Popescu, T., Neuser, M. P., Neuwirth, M., Bravo, F., Mende, W., Boneh, O., Moss, F. C., & Rohrmeier, M. (2019). The pleasantness of sensory dissonance is mediated by musical style and expertise. Scientific Reports, 9(1070). https://doi.org/10.1038/s41598-018-35873-8
Schwartz, D. A., Howe, C. Q., & Purves, D. (2003). The statistical structure of human speech sounds predicts musical universals. Journal of Neuroscience, 23(18), 7160–7168. https://doi.org/10.1523/JNEUROSCI.23-18-07160.2003
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.