na_predict: Replace missing values using multivariate statistical model

Description Usage Arguments Details See Also Examples

View source: R/predict.R

Description

Replace missing values using multivariate statistical model

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

Arguments

data

a data.frame.

formula

an object of class "formula": a symbolic description of the model to be fitted.

learnFun

learning function in form learnFun(formula, data, ...).

predictFun

function used for making predictions in form predictFun(object, newdata).

...

further arguments passed to learnFun.

family

in na_glm, this is the family argument from the glm method.

Details

Multiple convenience wrappers allow user to use: linear regression (na_lm), generalized linear models (na_glm), recursive partitioning and regression trees (na_rpart), random forests (na_rf) and additionally, for categorical data: naive Bayes (na_nb) and k-nearest neighbour classifiers (na_knn). Both na_rpart and na_rf can be used for predicting continuous and categorical variables.

See Also

lm, glm, rpart, randomForest, naiveBayes, knn

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
set.seed(123)

dat <- mtcars
dat$disp[sample.int(nrow(dat), 10)] <- NA
dat$gear[sample.int(nrow(dat), 10)] <- NA
dat$gear <- as.factor(dat$gear)

na_predict(dat, disp ~ mpg + drat, learnFun = glm, predictFun = function(object, newdata) {
           predict(object, newdata= newdata, type = "response") })
na_predict(dat, gear ~ mpg + drat, learnFun = e1071::naiveBayes)

# continuous variables
na_lm(dat, disp ~ mpg + drat)
na_glm(dat, disp ~ mpg + drat)
na_rpart(dat, disp ~ mpg + drat)
na_rf(dat, disp ~ mpg + drat)

# categorical variables
na_nb(dat, gear ~ mpg + drat)
na_knn(dat, gear ~ mpg + drat)
na_rpart(dat, factor(gear) ~ mpg + drat)
na_rf(dat, factor(gear) ~ mpg + drat)

twolodzko/misster documentation built on May 24, 2019, 2:54 p.m.