README.md

rayshader

Overview

rayshader is an open source package for producing 2D and 3D data visualizations in R. rayshader uses elevation data in a base R matrix and a combination of raytracing, hillshading algorithms, and overlays to generate stunning 2D and 3D maps. In addition to maps, rayshader also allows the user to translate ggplot2 objects into beautiful 3D data visualizations.

The models can be rotated and examined interactively or the camera movement can be scripted to create animations. Scenes can also be rendered using a high-quality pathtracer, rayrender. The user can also create a cinematic depth of field post-processing effect to direct the user’s focus to important regions in the figure. The 3D models can also be exported to a 3D-printable format with a built-in STL export function, and can be exported to an OBJ file.

Installation

# To install the latest version from Github:
# install.packages("devtools")
devtools::install_github("tylermorganwall/rayshader")

On Ubuntu, the following libraries are required:

libpng-dev libjpeg-dev libfreetype6-dev libglu1-mesa-dev libgl1-mesa-dev pandoc zlib1g-dev libicu-dev libgdal-dev gdal-bin libgeos-dev libproj-dev

Functions

Rayshader has seven functions related to mapping:

Rayshader also has functions to add water and generate overlays:

Also included are functions to add additional effects and information to your 3D visualizations:

And several helper functions for converting rasters to matrices:

And four functions to display and save your visualizations:

Finally, rayshader has a single function to generate 3D plots using ggplot2 objects:

All of these functions are designed to be used with the magrittr pipe %>%.

Usage

Rayshader can be used for two purposes: both creating hillshaded maps and 3D data visualizations plots. First, let’s look at rayshader’s mapping capabilities. For the latter, scroll below.

Mapping with rayshader

library(rayshader)

#Here, I load a map with the raster package.
loadzip = tempfile() 
download.file("https://tylermw.com/data/dem_01.tif.zip", loadzip)
localtif = raster::raster(unzip(loadzip, "dem_01.tif"))
unlink(loadzip)

#And convert it to a matrix:
elmat = raster_to_matrix(localtif)

#We use another one of rayshader's built-in textures:
elmat %>%
  sphere_shade(texture = "desert") %>%
  plot_map()

#sphere_shade can shift the sun direction:
elmat %>%
  sphere_shade(sunangle = 45, texture = "desert") %>%
  plot_map()

#detect_water and add_water adds a water layer to the map:
elmat %>%
  sphere_shade(texture = "desert") %>%
  add_water(detect_water(elmat), color = "desert") %>%
  plot_map()

#And we can add a raytraced layer from that sun direction as well:
elmat %>%
  sphere_shade(texture = "desert") %>%
  add_water(detect_water(elmat), color = "desert") %>%
  add_shadow(ray_shade(elmat), 0.5) %>%
  plot_map()

#And here we add an ambient occlusion shadow layer, which models 
#lighting from atmospheric scattering:

elmat %>%
  sphere_shade(texture = "desert") %>%
  add_water(detect_water(elmat), color = "desert") %>%
  add_shadow(ray_shade(elmat), 0.5) %>%
  add_shadow(ambient_shade(elmat), 0) %>%
  plot_map()

Rayshader also supports 3D mapping by passing a texture map (either external or one produced by rayshader) into the plot_3d function.

elmat %>%
  sphere_shade(texture = "desert") %>%
  add_water(detect_water(elmat), color = "desert") %>%
  add_shadow(ray_shade(elmat, zscale = 3), 0.5) %>%
  add_shadow(ambient_shade(elmat), 0) %>%
  plot_3d(elmat, zscale = 10, fov = 0, theta = 135, zoom = 0.75, phi = 45, windowsize = c(1000, 800))
Sys.sleep(0.2)
render_snapshot()

You can add a scale bar, as well as a compass using render_scalebar() and render_compass()

render_camera(fov = 0, theta = 60, zoom = 0.75, phi = 45)
render_scalebar(limits=c(0, 5, 10),label_unit = "km",position = "W", y=50,
                scale_length = c(0.33,1))
render_compass(position = "E")
render_snapshot(clear=TRUE)

Rayshader also includes the option to add a procedurally-generated cloud layer (and optionally, shadows):

elmat %>%
  sphere_shade(texture = "desert") %>%
  add_water(detect_water(elmat), color = "lightblue") %>%
  add_shadow(cloud_shade(elmat, zscale = 10, start_altitude = 500, end_altitude = 1000,), 0) %>%
  plot_3d(elmat, zscale = 10, fov = 0, theta = 135, zoom = 0.75, phi = 45, windowsize = c(1000, 800),
          background="darkred")
render_camera(theta = 20, phi=40,zoom= 0.64, fov= 56 )

render_clouds(elmat, zscale = 10, start_altitude = 800, end_altitude = 1000, attenuation_coef = 2, clear_clouds = T)
render_snapshot(clear=TRUE)

rgl::rgl.clear()

These clouds can be customized:

elmat %>%
  sphere_shade(texture = "desert") %>%
  add_water(detect_water(elmat), color = "lightblue") %>%
  add_shadow(cloud_shade(elmat,zscale = 10, start_altitude = 500, end_altitude = 700, 
                         sun_altitude = 45, attenuation_coef = 2, offset_y = 300,
              cloud_cover = 0.55, frequency = 0.01, scale_y=3, fractal_levels = 32), 0) %>%
  plot_3d(elmat, zscale = 10, fov = 0, theta = 135, zoom = 0.75, phi = 45, windowsize = c(1000, 800),
          background="darkred")
render_camera(theta = 125, phi=22,zoom= 0.47, fov= 60 )

render_clouds(elmat, zscale = 10, start_altitude = 500, end_altitude = 700, 
              sun_altitude = 45, attenuation_coef = 2, offset_y = 300,
              cloud_cover = 0.55, frequency = 0.01, scale_y=3, fractal_levels = 32, clear_clouds = T)
render_snapshot(clear=TRUE)

You can also render using the built-in pathtracer, powered by rayrender. Simply replace render_snapshot() with render_highquality(). When render_highquality() is called, there’s no need to pre-compute the shadows with any of the _shade() functions, so we remove those:

elmat %>%
  sphere_shade(texture = "desert") %>%
  add_water(detect_water(elmat), color = "desert") %>%
  plot_3d(elmat, zscale = 10, fov = 0, theta = 60, zoom = 0.75, phi = 45, windowsize = c(1000, 800))

render_scalebar(limits=c(0, 5, 10),label_unit = "km",position = "W", y=50,
                scale_length = c(0.33,1))

render_compass(position = "E")
Sys.sleep(0.2)
render_highquality(samples=200, scale_text_size = 24,clear=TRUE)

You can also easily add a water layer by setting water = TRUE in plot_3d() (and setting waterdepth if the water level is not 0), or by using the function render_water() after the 3D map has been rendered. You can customize the appearance and transparancy of the water layer via function arguments. Here’s an example using bathymetric/topographic data of Monterey Bay, CA (included with rayshader):

montshadow = ray_shade(montereybay, zscale = 50, lambert = FALSE)
montamb = ambient_shade(montereybay, zscale = 50)
montereybay %>%
    sphere_shade(zscale = 10, texture = "imhof1") %>%
    add_shadow(montshadow, 0.5) %>%
    add_shadow(montamb, 0) %>%
    plot_3d(montereybay, zscale = 50, fov = 0, theta = -45, phi = 45, 
            windowsize = c(1000, 800), zoom = 0.75,
            water = TRUE, waterdepth = 0, wateralpha = 0.5, watercolor = "lightblue",
            waterlinecolor = "white", waterlinealpha = 0.5)
Sys.sleep(0.2)
render_snapshot(clear=TRUE)

Water is also supported in render_highquality(). We load the rayrender package to change the ground material to include a checker pattern. By default, the camera looks at the origin, but we shift it down slightly to center the map.

library(rayrender)
## 
## Attaching package: 'rayrender'

## The following object is masked from 'package:rgl':
## 
##     text3d
montereybay %>%
    sphere_shade(zscale = 10, texture = "imhof1") %>%
    plot_3d(montereybay, zscale = 50, fov = 70, theta = 270, phi = 30, 
            windowsize = c(1000, 800), zoom = 0.6,  
            water = TRUE, waterdepth = 0, wateralpha = 0.5, watercolor = "#233aa1",
            waterlinecolor = "white", waterlinealpha = 0.5)
Sys.sleep(0.2)
render_highquality(lightdirection = c(-45,45), lightaltitude  = 30, clamp_value = 10, 
                   samples = 256, camera_lookat= c(0,-50,0),
                   ground_material = diffuse(color="grey50",checkercolor = "grey20", checkerperiod = 100),
                   clear = TRUE)

Rayshader also has map shapes other than rectangular included c("hex", "circle"), and you can customize the map into any shape you want by setting the areas you do not want to display to NA.

par(mfrow = c(1, 2)) 
montereybay %>% 
    sphere_shade(zscale = 10, texture = "imhof1") %>% 
    add_shadow(montshadow, 0.5) %>%
    add_shadow(montamb, 0) %>%
    plot_3d(montereybay, zscale = 50, fov = 0, theta = -45, phi = 45, windowsize = c(1000, 800), zoom = 0.6,
            water = TRUE, waterdepth = 0, wateralpha = 0.5, watercolor = "lightblue",
            waterlinecolor = "white", waterlinealpha = 0.5, baseshape = "circle")

render_snapshot(clear = TRUE)

montereybay %>% 
    sphere_shade(zscale = 10, texture = "imhof1") %>% 
    add_shadow(montshadow, 0.5) %>%
    add_shadow(montamb, 0) %>%
    plot_3d(montereybay, zscale = 50, fov = 0, theta = -45, phi = 45, windowsize = c(1000, 800), zoom = 0.6,
            water = TRUE, waterdepth = 0, wateralpha = 0.5, watercolor = "lightblue",
            waterlinecolor = "white", waterlinealpha = 0.5, baseshape = "hex")

render_snapshot(clear = TRUE)

Adding text labels is done with the render_label() function, which also allows you to customize the line type, color, and size along with the font:

montereybay %>% 
    sphere_shade(zscale = 10, texture = "imhof1") %>% 
    add_shadow(montshadow, 0.5) %>%
    add_shadow(montamb,0) %>%
    plot_3d(montereybay, zscale = 50, fov = 0, theta = -100, phi = 30, windowsize = c(1000, 800), zoom = 0.6,
            water = TRUE, waterdepth = 0, waterlinecolor = "white", waterlinealpha = 0.5,
            wateralpha = 0.5, watercolor = "lightblue")
render_label(montereybay, x = 350, y = 160, z = 1000, zscale = 50,
             text = "Moss Landing", textsize = 2, linewidth = 5)
render_label(montereybay, x = 220, y = 70, z = 7000, zscale = 50,
             text = "Santa Cruz", textcolor = "darkred", linecolor = "darkred",
             textsize = 2, linewidth = 5)
render_label(montereybay, x = 300, y = 270, z = 4000, zscale = 50,
             text = "Monterey", dashed = TRUE, textsize = 2, linewidth = 5)
render_label(montereybay, x = 50, y = 270, z = 1000, zscale = 50,  textcolor = "white", linecolor = "white",
             text = "Monterey Canyon", relativez = FALSE, textsize = 2, linewidth = 5) 
Sys.sleep(0.2)
render_snapshot(clear=TRUE)

Labels are also supported in render_highquality():

render_highquality(samples=256, line_radius = 1, text_size = 18, text_offset = c(0,12,0),
                   clamp_value=10, clear = TRUE)

3D paths, points, and polygons can be added directly from spatial objects from the sf library:

Polygons:

montereybay %>%
  sphere_shade(texture = "desert") %>%
  add_shadow(ray_shade(montereybay,zscale=50)) %>%
  plot_3d(montereybay,water=TRUE, windowsize=c(1000,800), watercolor="dodgerblue")
render_camera(theta=-60,  phi=60, zoom = 0.85, fov=30)

#We will apply a negative buffer to create space between adjacent polygons:
sf::sf_use_s2(FALSE) 
mont_county_buff = sf::st_simplify(sf::st_buffer(monterey_counties_sf,-0.003), dTolerance=0.004)

render_polygons(mont_county_buff,  
                extent = attr(montereybay,"extent"), data_column_top = "ALAND",
                scale_data = 300/(2.6E9), color="chartreuse4",
                parallel=TRUE)
render_highquality(clamp_value=10,samples=256)

render_polygons(clear_previous = TRUE)
render_camera(theta=225, phi=30,zoom=0.37,fov=48)

Points:

moss_landing_coord = c(36.806807, -121.793332) 
x_vel_out = -0.001 + rnorm(1000)[1:500]/1000
y_vel_out = rnorm(1000)[1:500]/200
z_out = c(seq(0,2000,length.out = 180), seq(2000,0,length.out=10), 
          seq(0,2000,length.out = 100), seq(2000,0,length.out=10))

bird_track_lat = list()
bird_track_long = list()
bird_track_lat[[1]] = moss_landing_coord[1]
bird_track_long[[1]] = moss_landing_coord[2]

for(i in 2:500) {
  bird_track_lat[[i]] = bird_track_lat[[i-1]] + y_vel_out[i]
  bird_track_long[[i]] = bird_track_long[[i-1]] + x_vel_out[i]
}

render_points(extent = attr(montereybay,"extent"), 
              lat = unlist(bird_track_lat), long = unlist(bird_track_long), 
              altitude = z_out, zscale=50, color="red")
render_highquality(point_radius = 1, samples = 256)

render_points(clear_previous = TRUE)

Paths:

render_path(extent = attr(montereybay,"extent"),  
            lat = unlist(bird_track_lat), long = unlist(bird_track_long), 
            altitude = z_out, zscale=50,color="white", antialias=TRUE)
render_highquality(line_radius = 1,samples=256, clear=TRUE)

You can also apply a post-processing effect to the 3D maps to render maps with depth of field with the render_depth() function:

elmat %>%
  sphere_shade(texture = "desert") %>%
  add_water(detect_water(elmat), color = "desert") %>%
  add_shadow(ray_shade(elmat, zscale = 3), 0.5) %>%
  add_shadow(ambient_shade(elmat), 0) %>%
  plot_3d(elmat, zscale = 10, fov = 30, theta = -225, phi = 25, windowsize = c(1000, 800), zoom = 0.3)
Sys.sleep(0.2)
render_depth(focallength = 800, clear = TRUE)
## Focus distance: 1732.75

3D plotting with rayshader and ggplot2

Rayshader can also be used to make 3D plots out of ggplot2 objects using the plot_gg() function. Here, I turn a color density plot into a 3D density plot. plot_gg() detects that the user mapped the fill aesthetic to color and uses that information to project the figure into 3D.

library(ggplot2)
## 
## Attaching package: 'ggplot2'

## The following object is masked from 'package:rayrender':
## 
##     arrow
ggdiamonds = ggplot(diamonds) +
  stat_density_2d(aes(x = x, y = depth, fill = stat(nlevel)), 
                  geom = "polygon", n = 200, bins = 50,contour = TRUE) +
  facet_wrap(clarity~.) +
  scale_fill_viridis_c(option = "A")

par(mfrow = c(1, 2))

plot_gg(ggdiamonds, width = 5, height = 5, raytrace = FALSE, preview = TRUE)
plot_gg(ggdiamonds, width = 5, height = 5, multicore = TRUE, scale = 250, 
        zoom = 0.7, theta = 10, phi = 30, windowsize = c(800, 800))
Sys.sleep(0.2)
render_snapshot(clear = TRUE)

Rayshader will automatically ignore lines and other elements that should not be mapped to 3D. Here’s a contour plot of the volcano dataset.

library(reshape2)
#Contours and other lines will automatically be ignored. Here is the volcano dataset:

ggvolcano = volcano %>% 
  melt() %>%
  ggplot() +
  geom_tile(aes(x = Var1, y = Var2, fill = value)) +
  geom_contour(aes(x = Var1, y = Var2, z = value), color = "black") +
  scale_x_continuous("X", expand = c(0, 0)) +
  scale_y_continuous("Y", expand = c(0, 0)) +
  scale_fill_gradientn("Z", colours = terrain.colors(10)) +
  coord_fixed()

par(mfrow = c(1, 2))
plot_gg(ggvolcano, width = 7, height = 4, raytrace = FALSE, preview = TRUE)
## Warning: Removed 1861 row(s) containing missing values (geom_path).
plot_gg(ggvolcano, multicore = TRUE, raytrace = TRUE, width = 7, height = 4, 
        scale = 300, windowsize = c(1400, 866), zoom = 0.6, phi = 30, theta = 30)
## Warning: Removed 1861 row(s) containing missing values (geom_path).
Sys.sleep(0.2)

render_snapshot(clear = TRUE)

Rayshader also detects when the user passes the color aesthetic, and maps those values to 3D. If both color and fill are passed, however, rayshader will default to fill.

mtplot = ggplot(mtcars) + 
  geom_point(aes(x = mpg, y = disp, color = cyl)) + 
  scale_color_continuous(limits = c(0, 8))

par(mfrow = c(1, 2))
plot_gg(mtplot, width = 3.5, raytrace = FALSE, preview = TRUE)

plot_gg(mtplot, width = 3.5, multicore = TRUE, windowsize = c(800, 800), 
        zoom = 0.85, phi = 35, theta = 30, sunangle = 225, soliddepth = -100)
Sys.sleep(0.2)
render_snapshot(clear = TRUE)

Utilize combinations of line color and fill to create different effects. Here is a terraced hexbin plot, created by mapping the line colors of the hexagons to black.

a = data.frame(x = rnorm(20000, 10, 1.9), y = rnorm(20000, 10, 1.2))
b = data.frame(x = rnorm(20000, 14.5, 1.9), y = rnorm(20000, 14.5, 1.9))
c = data.frame(x = rnorm(20000, 9.5, 1.9), y = rnorm(20000, 15.5, 1.9))
data = rbind(a, b, c)

#Lines
pp = ggplot(data, aes(x = x, y = y)) +
  geom_hex(bins = 20, size = 0.5, color = "black") +
  scale_fill_viridis_c(option = "C")

par(mfrow = c(1, 2))
plot_gg(pp, width = 5, height = 4, scale = 300, raytrace = FALSE, preview = TRUE)
plot_gg(pp, width = 5, height = 4, scale = 300, multicore = TRUE, windowsize = c(1000, 800))
render_camera(fov = 70, zoom = 0.5, theta = 130, phi = 35)
Sys.sleep(0.2)
render_snapshot(clear = TRUE)

You can also use the render_depth() function to direct the viewer’s focus to a important areas in the figure.

par(mfrow = c(1, 1))
plot_gg(pp, width = 5, height = 4, scale = 300, multicore = TRUE, windowsize = c(1200, 960),
        fov = 70, zoom = 0.4, theta = 330, phi = 40)
Sys.sleep(0.2)
render_depth(focallength = 100,clear=TRUE)
## Focus distance: 2001.41

Finally, you can increase the allowable error in triangulating the model to vastly reduce the size. Here, we reduce the model to 1/100th of it’s raw (un-triangulated) size, while maintaining model quality. This can improve the performance when rendering 3D ggplots with render_highquality(), as well as improve performance on slower computers. This triangulation is powered by the {terrainmeshr} package.

Here, we make a 3D ggplot out of glass, using a triangulated model and render_highquality().

tempfilehdr = tempfile(fileext = ".hdr")
download.file("https://www.tylermw.com/data/venice_sunset_2k.hdr",tempfilehdr)

par(mfrow = c(1, 1))
plot_gg(pp, width = 5, height = 4, scale = 300, raytrace = FALSE, windowsize = c(1200, 960),
        fov = 70, zoom = 0.4, theta = 330, phi = 20,  max_error = 0.01, verbose = TRUE)
## 98.8% reduction: Number of triangles reduced from 3600000 to 43606. Error: 0.009982
Sys.sleep(0.2)
render_highquality(samples = 256, aperture=30, light = FALSE, focal_distance = 1700,
                   obj_material = rayrender::dielectric(attenuation = c(1,1,0.3)/200), 
                   ground_material = rayrender::diffuse(checkercolor = "grey80",sigma=90,checkerperiod = 100),
                   environment_light = tempfilehdr, camera_lookat = c(0,-150,0))



tylermorganwall/rayshader documentation built on May 3, 2024, 6:03 p.m.