tzoltak/rstyles: Generating Simulated Data Mimicking Response Styles to Survey Questions

Package allows to generate simulated datasets using algorithms that mimic different response styles to survey questions using: 1) IRTree approach (Bockenholt (2012) <doi:10.1037/a0028111>, (2017) <doi:10.1037/met0000106>), 2) (G)PCM (and rating scale version of a partial credit model) random-thresholds approach (Falk & Cai (2016) <doi:10.1037/met0000059>; Henninger & Meiser (2020a) <doi:10.1037/met0000249>, (2020b) <doi:10.1037/met0000268>; Plieninger (2017) <doi:10.1177/0013164416636655>), 3) user provided function that (with some probability) chooses response using information about previous responses. This allows to cover wide range of potential response styles like: extreme and middle (ERS, MRS), acquiesce (ARS) and also careless/inattentive responding (CR, IR).

Getting started

Package details

MaintainerTomasz Zoltak <tomek@zozlak.org>
LicenseMIT + file LICENSE
Version0.7.3
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("remotes")
remotes::install_github("tzoltak/rstyles")
tzoltak/rstyles documentation built on Dec. 4, 2024, 5:16 p.m.