View source: R/compute_item_expected_scores.R
compute_item_expected_scores | R Documentation |
Function generates expected distribution of item scores given
item object constructed using make_item
or test (i.e. list of
items) object constructed using make_test
and covariance matrix
of latent traits, assuming multivariate-normal distribution of latent traits.
compute_item_expected_scores(x, vcov)
## S3 method for class 'rstylesTest'
compute_item_expected_scores(x, vcov)
## S3 method for class 'rstylesItem'
compute_item_expected_scores(x, vcov = diag(ncol(x$scoringMatrix)))
x |
an object of class rstylesItem or rstylesTest |
vcov |
a covariance matrix of latent traits (in line with item's scoring matrix); if not provided uncorrelated standard normal is used |
A table
make_item
itemGPCM <- make_item(scoringMatrix = make_scoring_matrix_aem(1:5, "gpcm")[, -4],
slopes = c(i = 1, m = 2, e = 3),
intercepts = cumsum(c(0, seq(-0.5, 0.5, length.out = 4))),
mode = "gpcm")
vcov <- matrix(c( 1, 0.5, -0.5,
0.5, 1, -0.25,
-0.5, -0.25, 1),
nrow = 3, dimnames = list(c("i", "m", "e"), c("i", "m", "e")))
compute_item_expected_scores(itemGPCM) # orthogonal, standard-normal latent traits
compute_item_expected_scores(itemGPCM, vcov)
itemIRTree <- make_item(scoringMatrix = make_scoring_matrix_aem(1:5, "mae"),
slopes = c(m = 1, a = 1, e = 1),
intercepts = c(m1 = 0, a1 = 0, e1 = 0),
mode = "irtree")
vcovIRTree <- vcov
colnames(vcovIRTree) <- rownames(vcovIRTree) <- c("a", "m", "e")
compute_item_expected_scores(itemIRTree) # orthogonal, standard-normal latent traits
compute_item_expected_scores(itemIRTree, vcovIRTree)
sM <- make_scoring_matrix_aem(1:5, "gpcm")[, -4]
test <- make_test(sM,
generate_slopes(11, sM, c(1, 2, 3)),
generate_intercepts(11, sM,
FUNd = seq,
argsd = list(from = -1.5, to = 1.5,
length.out = 11),
FUNt = seq,
argst = list(from = -1.5, to = 1.5,
length.out = 4)),
"gpcm")
sapply(compute_item_expected_scores(test, vcov), identity)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.