em_mixedgc_ppca_iter: Each iteration of EM algorithm fit (LRGC)

View source: R/iteration_func.R

em_mixedgc_ppca_iterR Documentation

Each iteration of EM algorithm fit (LRGC)

Description

fit the Gaussian copula model with incomplete mixed type data

Usage

em_mixedgc_ppca_iter(Z, Lower, Upper, d_index, W, sigma, n_update = 1)

Arguments

Z

Incomplete Z matrix

W

The latent low rank subspace matrix

sigma

The noise variance

Z_lower

Lower boundary of truncated intervals for ordinal columns

Z_upper

Upper boundary of truncated intervals for ordinal columns

Value

A list containing fitted copula parameters, the likelihood (objective function), Z matrix with updated ordinal entries and the conditional variance corresponding to the observed Z matrix.

W

Fitted latent low rank subspace matrix

sigma

Fitted noise variance

loglik

The log-likelihood achieved during iteration.

Zobs

Incomplete Z with approximated observed ordinal entries

C

The conditional variance corresponding to the observed Z matrix. Useful for quantifying imputation uncertainty.

S

Required quantity to impute the Z matrix

Author(s)

Yuxuan Zhao, yz2295@cornell.edu and Madeleine Udell, udell@cornell.edu

References

Zhao, Y., & Udell, M. (2020). Matrix Completion with Quantified Uncertainty through Low Rank Gaussian Copula. arXiv preprint arXiv:2006.10829.


udellgroup/mixedgcImp documentation built on Jan. 25, 2023, 7:55 p.m.