Description Format Usage Arguments Methods
Evoxploit
computes evolution features on longitudinal data.
R6Class
object.
1 2 3 4 5 6 7 8 9 |
For Evoxploit$new():
('data.frame')
The data set with all input features (predictors). The object (created with Predictor$new())
holding the machine learning model and the data.
('factor' | 'numeric')
The target variable (response).
('character(1)')
The wave suffix given as string.
('integer(1)')
(optional) minPts parameter for DBSCAN clustering.
('double(1)')
(optional) eps parameter for DBSCAN clustering.
('logical(1)')
Should the (evo) features extraction method be run?
('logical(1)')
Whether or not to show some diagnostic messages. Defaults to FALSE.
new()
Evoxploit$new( data, label, wave_suffix = "_s", minPts = NULL, eps = NULL, train_lgc = rep(TRUE, nrow(data)), run = TRUE, verbose = FALSE )
run()
Evoxploit$run(verbose = FALSE)
summary()
Evoxploit$summary()
clone()
The objects of this class are cloneable with this method.
Evoxploit$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.