knitr::opts_chunk$set(echo = TRUE)

uhregmisc

Miscellaneous Helper Functions For The Univ. Regensburg Tinnitus Data.

Important: For most of the functions to work, you would need to put into the data-raw/ folder the original dataset (200622_uhreg.xlsx) which cannot be uploaded to GitHub due to copyright reasons.

Overview

Installation

remotes::install_github("unmnn/uhregmisc")
library(uhregmisc)

Shiny app on data missingness

knitr::include_graphics(file.path("app-ume", "app-ume.png"))

Provides an overview of missing data patterns. You can specify a data subset based on:

Additionally, you can choose to order questionnaires (y-axis) either by mutual missingness (determined by a hierarchical clustering) or just alphabetically by their name.

How to run app

# When running the first time, create the necessary pre-processed dataset with:
source("app-ume/ume_prep-data.R")
# Afterwards, the folder `app-ume` should contain the file `data.rds`.
# Then, just run the app via:
shiny::runApp("app-ume")

Data preprocessing steps

The script data-raw/uhreg.R preprocesses the UHREG data.

Open questions

109 unique treatment pathways

                               S                         S-B-FV-FU 
                              869                                38 
                             FV-B                            S-B-FV 
                               32                                24 
                             B-FV                               S-S 
                               22                                17 
                     B-FV-I-I-I-S                     B-FV-FU-FU-FU 
                               16                                15

TODOS

data_dict

library(dplyr)
library(purrr)
data_dict

var <- "TSCHQ_q09_perception"
data_dict %>% filter(variable == var) %>% pull(description)
data_dict %>% filter(variable == var) %>% pluck("value", 1)

uhreg overview

skimr::skim_without_charts(uhreg)


unmnn/uhregmisc documentation built on Nov. 13, 2020, 4:05 a.m.