library(knitr) library(qsimulatR) knitr::opts_chunk$set(fig.align='center', comment='')
We use a rotation matrix [ U\ =\ \begin{pmatrix} c & s \ -s & c \ \end{pmatrix} ] with $c=\cos(\alpha)$, $s=\sin(\alpha)$ and a real-valued angle $\alpha$ as an example. $U$ has eigenvalues [ \lambda_\pm\ =\ c\pm \mathrm{i} s\ =\ e^{\pm i \alpha}\,. ] Thus, $\phi=\alpha/(2\pi)$. The corresponding eigenvectors are of the form [ u_\pm\ =\ \begin{pmatrix} 1 \ \pm\mathrm{i}\ \end{pmatrix}\,. ]
We use
t=6
in the second register which allows us with probability $1-\epsilon$ to get the correct phase up to $t-\left\lceil \log\left(2+\frac{1}{2\epsilon}\right)\right\rceil$ digits. Let us choose
epsilon <- 1/4 ## note the log in base-2 digits <- t-ceiling(log(2+1/(2*epsilon))/log(2)) digits
and therefore expect an error of less than
2^(-digits)
We start with qubit 1 in state $u_+$
x <- S(1) * (H(1) * qstate(t+1, basis=""))
and we define the gate corresponding to $U$
alpha <- pi*3/7 s <- sin(alpha) c <- cos(alpha) ## note that R fills the matrix columns first M <- array(as.complex(c(c, -s, s, c)), dim=c(2,2)) Uf <- sqgate(bit=1, M=M, type=paste0("Uf"))
Now we apply the Hadamard gate to qubits 2,\dots,t+1
for(i in c(2:(t+1))) { x <- H(i) * x }
and the controlled $U_f$
for(i in c(2:(t+1))) { x <- cqgate(bits=c(i, 1), gate=sqgate(bit=1, M=M, type=paste0("Uf", 2^(i-2)))) * x M <- M %*% M } plot(x)
Next we apply the inverse Fourier transform
x <- qft(x, inverse=TRUE, bits=c(2:(t+1))) plot(x)
$x$ is now the state $|\tilde\varphi\rangle|u\rangle$. $|\tilde\varphi\rangle$ is not necessarily a pure state. The next step is a projective measurement of $|\tilde\varphi\rangle$
xtmp <- measure(x) cbits <- genStateNumber(which(xtmp$value==1)-1, t+1) phi <- sum(cbits[1:t]/2^(1:t)) cbits[1:t] phi
Note that we can measure the complete state, because $|u\rangle$ is not entangled to the rest. We find that usually
phi-alpha/(2*pi)
is indeed smaller than the maximal deviation $2^{-\mathrm{digits}}=$
r 2^(-digits)
we expect. The distribution of probabilities over the
states in $|\tilde\varphi\rangle$ is given as follows (factor 2 from
dropping $|u\rangle$)
plot(2*abs(x@coefs[seq(1,128,2)])^2, type="l", ylab="p", xlab="state index")
The algorithm also works in case the specific eigenvector cannot be prepared. Starting with a random initial state $|\psi\rangle = \sum_u c_u |u\rangle$, we may apply the very same algorithm and we will find the approximation to the phase $\varphi_u$ with probability $|c_u|^2(1-\epsilon)$.
We prepare the second register in the state [ \begin{pmatrix} 1\ 1\ \end{pmatrix}\ =\ (1-i) u_+ + (1+i) u_-\,. ]
x <- (H(1) * qstate(t+1, basis=""))
This implies that we will find both $\varphi_u$ with equal probability.
for(i in c(2:(t+1))) { x <- H(i) * x } M <- array(as.complex(c(c, -s, s, c)), dim=c(2,2)) for(i in c(2:(t+1))) { x <- cqgate(bits=c(i, 1), gate=sqgate(bit=1, M=M, type=paste0("Uf", 2^(i-2)))) * x M <- M %*% M } x <- qft(x, inverse=TRUE, bits=c(2:(t+1))) measurephi <- function(x, t) { xtmp <- measure(x) cbits <- genStateNumber(which(xtmp$value==1)-1, t+1) phi <- sum(cbits[1:t]/2^(1:t)) return(invisible(phi)) } phi <- measurephi(x, t=t) 2*pi*phi phi-c(+alpha, 2*pi-alpha)/2/pi
We can draw the probability distribution again and observe the two peaks corresponding to the two eigenvalues
plot(abs(x@coefs)^2, type="l", ylab="p", xlab="state index")
Let's measure r N=1000
r N
times, which is easily possible in our simulator
phi <- c() for(i in c(1:N)) { phi[i] <- measurephi(x, t) } hist(phi, breaks=2^t, xlim=c(0,1)) abline(v=c(alpha/2/pi, 1-alpha/2/pi), lwd=2, col="red")
The red vertical lines indicate the true values.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.