library(sf) library(tidyverse) library(tmap) library(tmaptools) library(tigris) library(tidycensus) library(rmapshaper) library(matrixStats) library(SpatialAcc) library(reticulate) library(dplyr) library(tidygeocoder) library(readxl) library(DBI)
con <- get_db_conn(db_pass = "rsu8zvrsu8zv") # internet package price va_hd_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.va_hd_broadband_now_2021_internet_package_price") va_ct_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.va_ct_broadband_now_2021_internet_package_price") va_tr_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.va_tr_broadband_now_2021_internet_package_price_update") va_bg_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.va_bg_broadband_now_2021_internet_package_price_update") md_ct_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.md_ct_broadband_now_2021_internet_package_price") md_tr_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.md_tr_broadband_now_2021_internet_package_price_update") md_bg_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.md_bg_broadband_now_2021_internet_package_price_update") dc_ct_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.dc_ct_broadband_now_2021_internet_package_price") dc_tr_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.dc_tr_broadband_now_2021_internet_package_price_update") dc_bg_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.dc_bg_broadband_now_2021_internet_package_price_update") ncr_ct_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.ncr_ct_broadband_now_2021_internet_package_price") ncr_tr_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.ncr_tr_broadband_now_2021_internet_package_price_update") ncr_bg_broadband_now_2021_internet_package_price <- st_read(con, query = "SELECT * FROM dc_digital_communications.ncr_bg_broadband_now_2021_internet_package_price_update") # 100/20 va_hd_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.va_hd_broadband_now_2021_internet_package_price_100_20") va_ct_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.va_ct_broadband_now_2021_internet_package_price_100_20") va_tr_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.va_tr_broadband_now_2021_internet_package_price_100_20") va_bg_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.va_bg_broadband_now_2021_internet_package_price_100_20") md_ct_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.md_ct_broadband_now_2021_internet_package_price_100_20") md_tr_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.md_tr_broadband_now_2021_internet_package_price_100_20") md_bg_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.md_bg_broadband_now_2021_internet_package_price_100_20") dc_ct_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.dc_ct_broadband_now_2021_internet_package_price_100_20") dc_tr_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.dc_tr_broadband_now_2021_internet_package_price_100_20") dc_bg_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.dc_bg_broadband_now_2021_internet_package_price_100_20") ncr_ct_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.ncr_ct_broadband_now_2021_internet_package_price_100_20") ncr_tr_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.ncr_tr_broadband_now_2021_internet_package_price_100_20") ncr_bg_broadband_now_2021_internet_package_price.2 <- st_read(con, query = "SELECT * FROM dc_digital_communications.ncr_bg_broadband_now_2021_internet_package_price_100_20") DBI::dbDisconnect(con) va_hd_broadband_now_2021_internet_package_price.final <- rbind(va_hd_broadband_now_2021_internet_package_price.2, va_hd_broadband_now_2021_internet_package_price) va_ct_broadband_now_2021_internet_package_price.final <- rbind(va_hd_broadband_now_2021_internet_package_price.2, va_hd_broadband_now_2021_internet_package_price) va_tr_broadband_now_2021_internet_package_price.final <- rbind(va_hd_broadband_now_2021_internet_package_price.2, va_hd_broadband_now_2021_internet_package_price) va_bg_broadband_now_2021_internet_package_price.final <- rbind(va_hd_broadband_now_2021_internet_package_price.2, va_hd_broadband_now_2021_internet_package_price) md_ct_broadband_now_2021_internet_package_price.final <- rbind(md_ct_broadband_now_2021_internet_package_price.2, md_ct_broadband_now_2021_internet_package_price) md_tr_broadband_now_2021_internet_package_price.final <- rbind(md_tr_broadband_now_2021_internet_package_price.2, md_tr_broadband_now_2021_internet_package_price) md_bg_broadband_now_2021_internet_package_price.final <- rbind(md_bg_broadband_now_2021_internet_package_price.2, md_bg_broadband_now_2021_internet_package_price) dc_ct_broadband_now_2021_internet_package_price.final <- rbind(dc_ct_broadband_now_2021_internet_package_price.2, dc_ct_broadband_now_2021_internet_package_price) dc_tr_broadband_now_2021_internet_package_price.final <- rbind(dc_tr_broadband_now_2021_internet_package_price.2, dc_tr_broadband_now_2021_internet_package_price) dc_bg_broadband_now_2021_internet_package_price.final <- rbind(dc_bg_broadband_now_2021_internet_package_price.2, dc_bg_broadband_now_2021_internet_package_price) ncr_ct_broadband_now_2021_internet_package_price.final <- rbind(ncr_ct_broadband_now_2021_internet_package_price.2, ncr_ct_broadband_now_2021_internet_package_price) ncr_tr_broadband_now_2021_internet_package_price.final <- rbind(ncr_tr_broadband_now_2021_internet_package_price.2, ncr_tr_broadband_now_2021_internet_package_price) ncr_bg_broadband_now_2021_internet_package_price.final <- rbind(ncr_bg_broadband_now_2021_internet_package_price.2, ncr_bg_broadband_now_2021_internet_package_price)
dmv.ct <- get_acs(geography = "county", year = 2019, variables = c(median_household_income = "B19013_001"), state = c("VA", "DC", "MD"), survey = "acs5", output = "wide", geometry = TRUE) dmv.tr <- get_acs(geography = "tract", year = 2019, variables = c(median_household_income = "B19013_001"), state = c("VA", "DC", "MD"), survey = "acs5", output = "wide", geometry = TRUE) dmv.bg <- get_acs(geography = "block group", year = 2019, variables = c(median_household_income = "B19013_001"), state = c("VA", "DC", "MD"), survey = "acs5", output = "wide", geometry = TRUE)
# NCR ncr.tr <- dmv.tr[substr(dmv.tr$GEOID, 1, 5) %in% c("51013", "51059", "51107", "51510", "51600", "51153", "51683", "51685", "51610", "11001", "24031", "24033", "24017", "24021"),] ncr.inc_and_price <- left_join(ncr.tr[,c("GEOID", "median_household_incomeE")], ncr_tr_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") ncr.inc_and_price.2 <- st_drop_geometry(ncr.inc_and_price) %>% drop_na(value) ncr.inc_and_price.3.tr <- st_drop_geometry(ncr.tr) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "tract") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(ncr.inc_and_price.2) # VA va.tr <- dmv.tr[substr(dmv.tr$GEOID, 1, 2) == "51",] va.inc_and_price <- left_join(va.tr[,c("GEOID", "median_household_incomeE")], va_tr_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") va.inc_and_price.2 <- st_drop_geometry(va.inc_and_price) %>% drop_na(value) va.inc_and_price.3.tr <- st_drop_geometry(va.tr) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "tract") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(va.inc_and_price.2) # DC dc.tr <- dmv.tr[substr(dmv.tr$GEOID, 1, 2) == "11",] dc.inc_and_price <- left_join(dc.tr[,c("GEOID", "median_household_incomeE")], dc_tr_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") dc.inc_and_price.2 <- st_drop_geometry(dc.inc_and_price) %>% drop_na(value) dc.inc_and_price.3.tr <- st_drop_geometry(dc.tr) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "tract") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(dc.inc_and_price.2) # MD md.tr <- dmv.tr[substr(dmv.tr$GEOID, 1, 2) == "24",] md.inc_and_price <- left_join(md.tr[,c("GEOID", "median_household_incomeE")], md_tr_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") md.inc_and_price.2 <- st_drop_geometry(md.inc_and_price) %>% drop_na(value) md.inc_and_price.3.tr <- st_drop_geometry(md.tr) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "tract") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(md.inc_and_price.2)
# NCR ncr.ct <- dmv.ct[substr(dmv.ct$GEOID, 1, 5) %in% c("51013", "51059", "51107", "51510", "51600", "51153", "51683", "51685", "51610", "11001", "24031", "24033", "24017", "24021"),] ncr.inc_and_price <- left_join(ncr.ct[,c("GEOID", "median_household_incomeE")], ncr_ct_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") ncr.inc_and_price.2 <- st_drop_geometry(ncr.inc_and_price) %>% drop_na(value) ncr.inc_and_price.3.ct <- st_drop_geometry(ncr.ct) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "county") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(ncr.inc_and_price.2) # VA va.ct <- dmv.ct[substr(dmv.ct$GEOID, 1, 2) == "51",] va.inc_and_price <- left_join(va.ct[,c("GEOID", "median_household_incomeE")], va_ct_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") va.inc_and_price.2 <- st_drop_geometry(va.inc_and_price) %>% drop_na(value) va.inc_and_price.3.ct <- st_drop_geometry(va.ct) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "county") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(va.inc_and_price.2) # DC dc.ct <- dmv.ct[substr(dmv.ct$GEOID, 1, 2) == "11",] dc.inc_and_price <- left_join(dc.ct[,c("GEOID", "median_household_incomeE")], dc_ct_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") dc.inc_and_price.2 <- st_drop_geometry(dc.inc_and_price) %>% drop_na(value) dc.inc_and_price.3.ct <- st_drop_geometry(dc.ct) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "county") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(dc.inc_and_price.2) # MD md.ct <- dmv.ct[substr(dmv.ct$GEOID, 1, 2) == "24",] md.inc_and_price <- left_join(md.ct[,c("GEOID", "median_household_incomeE")], md_ct_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") md.inc_and_price.2 <- st_drop_geometry(md.inc_and_price) %>% drop_na(value) md.inc_and_price.3.ct <- st_drop_geometry(md.ct) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "county") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(md.inc_and_price.2)
# NCR ncr.bg <- dmv.bg[substr(dmv.bg$GEOID, 1, 5) %in% c("51013", "51059", "51107", "51510", "51600", "51153", "51683", "51685", "51610", "11001", "24031", "24033", "24017", "24021"),] ncr.inc_and_price <- left_join(ncr.bg[,c("GEOID", "median_household_incomeE")], ncr_bg_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") ncr.inc_and_price.2 <- st_drop_geometry(ncr.inc_and_price) %>% drop_na(value) ncr.inc_and_price.3.bg <- st_drop_geometry(ncr.bg) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "block group") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(ncr.inc_and_price.2) # VA va.bg <- dmv.bg[substr(dmv.bg$GEOID, 1, 2) == "51",] va.inc_and_price <- left_join(va.bg[,c("GEOID", "median_household_incomeE")], va_bg_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") va.inc_and_price.2 <- st_drop_geometry(va.inc_and_price) %>% drop_na(value) va.inc_and_price.3.bg <- st_drop_geometry(va.bg) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "block group") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(va.inc_and_price.2) # DC dc.bg <- dmv.bg[substr(dmv.bg$GEOID, 1, 2) == "11",] dc.inc_and_price <- left_join(dc.bg[,c("GEOID", "median_household_incomeE")], dc_bg_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") dc.inc_and_price.2 <- st_drop_geometry(dc.inc_and_price) %>% drop_na(value) dc.inc_and_price.3.bg <- st_drop_geometry(dc.bg) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "block group") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(dc.inc_and_price.2) # MD md.bg <- dmv.bg[substr(dmv.bg$GEOID, 1, 2) == "24",] md.inc_and_price <- left_join(md.bg[,c("GEOID", "median_household_incomeE")], md_bg_broadband_now_2021_internet_package_price.final, by = c("GEOID" = "geoid")) %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, geoid = GEOID) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") md.inc_and_price.2 <- st_drop_geometry(md.inc_and_price) %>% drop_na(value) md.inc_and_price.3.bg <- st_drop_geometry(md.bg) %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "block group") %>% select(-c(median_household_incomeE, median_household_incomeM)) %>% rename(geoid = GEOID, region_name = NAME) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(md.inc_and_price.2)
va.ct.2 <- get_acs(geography = "county", year = 2019, variables = c(median_household_income = "B19013_001", pop = "B01001_001"), state = "VA", survey = "acs5", output = "wide", geometry = F) # health districts health_district <- read.csv("/project/biocomplexity/sdad/projects_data/vdh/va_county_to_hd.csv") health_district$county_id <- as.character(health_district$county_id) con <- get_db_conn(db_pass = "rsu8zvrsu8zv") health_district_geoids <- st_read(con, query = "SELECT * FROM dc_geographies.va_hd_vdh_2021_health_district_geo_names") DBI::dbDisconnect(con) health_district_2 <- left_join(health_district, health_district_geoids, by = c("health_district" = "region_name")) va.hd <- va.ct.2 %>% merge(health_district_2, by.x = "GEOID", by.y = "county_id") %>% group_by(health_district, geoid) %>% summarize(median_household_incomeE = sum(median_household_incomeE * popE) / sum(popE)) va.inc_and_price <- va.hd %>% merge(va_hd_broadband_now_2021_internet_package_price.final[, c("region_type", "region_name", "measure", "value", "year")], by.x = "health_district", by.y = "region_name") %>% mutate(perc_annual_income = ifelse(value / median_household_incomeE * 100 * 12 > 0, value / median_household_incomeE * 100 * 12, NA)) %>% select(-c(median_household_incomeE, value)) %>% mutate(measure = paste0("perc_income_", measure), measure_type = "percent", measure_units = as.character(NA)) %>% rename(value = perc_annual_income, region_name = health_district) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") va.inc_and_price.2 <- va.inc_and_price %>% drop_na(value) va.inc_and_price.3.hd <- va.hd %>% mutate(value = 64 / median_household_incomeE * 100 * 12, measure = "perc_income_avg_nat_package", measure_type = "percent", measure_units = as.character(NA), year = 2021, region_type = "health district") %>% select(-c(median_household_incomeE,)) %>% rename(region_name = health_district) %>% relocate("geoid", "region_type", "region_name", "year", "measure", "value", "measure_type", "measure_units") %>% rbind(va.inc_and_price.2)
va_perc_income_total <- rbind(va.inc_and_price.3.hd, va.inc_and_price.3.ct, va.inc_and_price.3.tr, va.inc_and_price.3.bg) dc_perc_income_total <- rbind(dc.inc_and_price.3.ct, dc.inc_and_price.3.tr, dc.inc_and_price.3.bg) md_perc_income_total <- rbind(md.inc_and_price.3.ct, md.inc_and_price.3.tr, md.inc_and_price.3.bg) ncr_perc_income_total <- rbind(ncr.inc_and_price.3.ct, ncr.inc_and_price.3.tr, ncr.inc_and_price.3.bg) con <- get_db_conn(db_pass = "rsu8zvrsu8zv") dc_dbWriteTable(con, "dc_digital_communications", "ncr_cttrbg_sdad_2021_perc_income_on_internet", ncr_perc_income_total) dc_dbWriteTable(con, "dc_digital_communications", "va_hdcttrbg_sdad_2021_perc_income_on_internet", va_perc_income_total) dc_dbWriteTable(con, "dc_digital_communications", "dc_cttrbg_sdad_2021_perc_income_on_internet", dc_perc_income_total) dc_dbWriteTable(con, "dc_digital_communications", "md_cttrbg_sdad_2021_perc_income_on_internet", md_perc_income_total) dbDisconnect(con)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.