cor.matrix: Function to obtain the correlation between two matrices and...

Description Usage Arguments Details Value Author(s) References See Also

Description

The functions cor.matrix and cor.matrix.partial are similar the function mantel and mantel.partial, although the significance of the statistics is evaluated differently from Mantel. The functions pro.matrix and pro.matrix.partial use symmetric Procrustes as a measure of concordance between data sets. The function cor.mantel is similar to the function mantel, but allows the use of a set of predefined permutation. For more details, see syncsa.

Usage

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
cor.matrix(
  mx1,
  mx2,
  x,
  my1 = NULL,
  my2 = NULL,
  y,
  permute.my2 = FALSE,
  method = "pearson",
  dist = "euclidean",
  permutations = 999,
  norm = FALSE,
  norm.y = FALSE,
  strata = NULL,
  na.rm = FALSE,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

cor.matrix.bf(
  dist.x,
  dist.y,
  method = "pearson",
  permutations = 999,
  strata = NULL,
  na.rm = FALSE,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

cor.matrix.partial(
  mx1,
  mx2,
  x,
  my1 = NULL,
  my2 = NULL,
  y,
  mz1 = NULL,
  mz2 = NULL,
  z,
  method = "pearson",
  dist = "euclidean",
  permute.my2 = FALSE,
  permute.mz2 = FALSE,
  permutations = 999,
  norm = FALSE,
  norm.y = FALSE,
  norm.z = FALSE,
  strata = NULL,
  na.rm = FALSE,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

cor.matrix.rao(
  mx1,
  mx2,
  x,
  y,
  method = "pearson",
  dist = "euclidean",
  put.together = NULL,
  permutations = 999,
  strata = NULL,
  na.rm = FALSE,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

pro.matrix(
  mx1,
  mx2,
  x,
  my1 = NULL,
  my2 = NULL,
  y,
  permute.my2 = FALSE,
  permutations = 999,
  norm = FALSE,
  norm.y = FALSE,
  strata = NULL,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

pro.matrix.bf(
  x,
  y,
  permutations = 999,
  strata = NULL,
  na.rm = FALSE,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

pro.matrix.partial(
  mx1,
  mx2,
  x,
  my1 = NULL,
  my2 = NULL,
  y,
  mz1 = NULL,
  mz2 = NULL,
  z,
  permute.my2 = FALSE,
  permute.mz2 = FALSE,
  permutations = 999,
  norm = FALSE,
  norm.y = FALSE,
  norm.z = FALSE,
  strata = NULL,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

pro.matrix.rao(
  mx1,
  mx2,
  x,
  y,
  put.together = NULL,
  permutations = 999,
  strata = NULL,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

rv.matrix(
  mx1,
  mx2,
  x,
  my1 = NULL,
  my2 = NULL,
  y,
  permute.my2 = FALSE,
  permutations = 999,
  norm = FALSE,
  norm.y = FALSE,
  strata = NULL,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

rv.matrix.bf(
  x,
  y,
  permutations = 999,
  strata = NULL,
  na.rm = FALSE,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

rv.matrix.partial(
  mx1,
  mx2,
  x,
  my1 = NULL,
  my2 = NULL,
  y,
  mz1 = NULL,
  mz2 = NULL,
  z,
  permute.my2 = FALSE,
  permute.mz2 = FALSE,
  permutations = 999,
  norm = FALSE,
  norm.y = FALSE,
  norm.z = FALSE,
  strata = NULL,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

rv.matrix.rao(
  mx1,
  mx2,
  x,
  y,
  put.together = NULL,
  permutations = 999,
  strata = NULL,
  seqpermutation = NULL,
  parallel = NULL,
  newClusters = TRUE,
  CL = NULL
)

Arguments

mx1

Matrix that multiplied by mx2 results in the matrix x.

mx2

Matrix that when multiplied by mx1 results in the matrix x. See 'details' below.

x

Matrix that will be correlated with the matrix y.

my1

Matrix that multiplied by my2 results in the matrix y.

my2

Matrix that when multiplied by my1 results in the matrix y. See 'details' below.

y

Matrix that will be correlated with the matrix x.

permute.my2

Logical argument (TRUE or FALSE) to specify if realize parallel permutation in matrix my2.

method

Correlation method, as accepted by cor: "pearson", "spearman" or "kendall".

dist

Dissimilarity index, as accepted by vegdist: "manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup" , "binomial" or "chao".

permutations

Number of permutations in assessing significance.

norm

Logical argument (TRUE or FALSE) to specify if x is standardized within variables (Default norm = FALSE).

norm.y

Logical argument (TRUE or FALSE) to specify if y is standardized within variables (Default norm = FALSE).

strata

Argument to specify restricting permutations within species groups (Default strata = NULL).

na.rm

Logical argument (TRUE or FALSE) to specify if pairwise deletion of missing observations when computing dissimilarities (Default na.rm = FALSE).

seqpermutation

A set of predefined permutation, with the same dimensions of permutations (Default seqpermutation = NULL).

parallel

Number of parallel processes. Tip: use parallel::detectCores() (Default parallel = NULL).

newClusters

Logical argument (TRUE or FALSE) to specify if make new parallel processes or use predefined socket cluster. Only if parallel is different of NULL (Default newClusters = TRUE).

CL

A predefined socket cluster done with parallel package.

dist.x

Dissimilarity matrices of class dist.

dist.y

Dissimilarity matrices of class dist.

mz1

Matrix that multiplied by mz2 results in the matrix z.

mz2

Matrix that when multiplied by mz1 results in the matrix z. See 'details' below.

z

Matrix whose effect will be removed from the correlation between x and y.

permute.mz2

Logical argument (TRUE or FALSE) to specify if realize parallel permutation in matrix mz2.

norm.z

Logical argument (TRUE or FALSE) to specify if z is standardized within variables (Default norm = FALSE).

put.together

List to specify group of traits. Each group specify receive the same weight that one trait outside any group, in the way each group is considered as unique trait (Default put.together = NULL). This argument must be a list, see examples in syncsa.

Details

The null model is based on permutations in the matrix mx2, typically the matrices B, U and Q, except in the function cor.mantel when the permutations are done in one of distance matrix.

Null model described by Pillar et al. (2009) and Pillar & Duarte (2010). For more details on the matrices and the null model, see syncsa.

Value

Obs

Correlation between matrices.

p

Significance level based on permutations.

Author(s)

Vanderlei Julio Debastiani <vanderleidebastiani@yahoo.com.br>

References

Pillar, V.D.; Duarte, L.d.S. (2010). A framework for metacommunity analysis of phylogenetic structure. Ecology Letters, 13, 587-596.

Pillar, V.D., Duarte, L.d.S., Sosinski, E.E. & Joner, F. (2009). Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science, 20, 334:348.

See Also

syncsa, organize.syncsa, mantel, procrustes


vanderleidebastiani/SYNCSA documentation built on Sept. 4, 2020, 10:57 p.m.