Description Usage Arguments Value
Uses maximum likelihood to fit
Y|X ~ Lognormal(beta_0 + beta_x^T X, sigsq). Y 
can be precisely measured or subject to multiplicative mean-1 lognormal 
errors, in which case replicates can be incorporated by specifying y 
as a list).
| 1 2 3 4 5 6 7 8 | 
| y | Numeric vector or list. | 
| x | Numeric vector or matrix. If  | 
| merror | Logical value for whether to model multiplicative lognormal measurement errors in Y. | 
| estimate_var | Logical value for whether to return Hessian-based variance-covariance matrix. | 
| fix_posdef | Logical value for whether to repeatedly reduce
 | 
| ... | Additional arguments to pass to  | 
List containing:
Numeric vector of parameter estimates.
 Variance-covariance matrix (if estimate_var = TRUE).
 Returned nlminb object from maximizing the
log-likelihood function.
Akaike information criterion (AIC).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.