efast_hemi | R Documentation |
This function estimates efast models with covariance due to hemispheric symmetry.
efast_hemi(
data,
M,
lh_idx,
rh_idx,
roi_names,
constrain = FALSE,
sample.nobs = NULL,
auto.fix.first = FALSE,
auto.var = TRUE,
auto.efa = TRUE,
information = "observed",
std.ov = TRUE,
...
)
data |
<data.frame> the dataset or <matrix> covariance matrix |
M |
<numeric> How many factors, minimum 2 |
lh_idx |
<numeric> column numbers of left hemisphere variables |
rh_idx |
<numeric> column numbers of right hemisphere variables |
roi_names |
<character> optional names of rois |
constrain |
<bool> whether to constrain the symmetry (see details) |
sample.nobs |
<numeric> sample size (if data = covmat, see lavaan) |
auto.fix.first |
<bool> see lavaan |
auto.var |
<bool> see lavaan |
auto.efa |
<bool> see lavaan |
information |
<character> see lavaan |
std.ov |
<bool> see lavaan |
... |
other arguments passed to lavaan |
The constrained model constrains the residual covariance to be equal across the different ROIs.
## Not run:
# create a test dataset
test_data <- simulate_efast()
fit_efast <- efast_hemi(test_data, M = 4, 1:17, 18:34)
summary(fit_efast)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.