An R
package for structural equation modeling using Torch
. This package is meant for researchers who know their way around SEM, Torch, and lavaan.
Note:
tensorsem
used to be a combinedR
andpython
package, with model specification inR
and estimation inpython
. To view and download version 1, go tov1.0
Structural equation modeling is implemented as a fully functional torch nn
module. A short example optimization loop would be:
library(tensorsem)
# model syntax (we use lavaan)
syntax <- "
# three-factor model
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
"
# create a data object as a torch tensor
dat <- torch_tensor(
data = scale(HolzingerSwineford1939[,7:15], scale = FALSE),
requires_grad = FALSE
)
# initialize the SEM model object
model <- torch_sem(syntax)
# initialize the optimizer
opt <- optim_adam(model$parameters, lr = 0.01)
# optimize
for (epoch in 1:500) {
opt$zero_grad() # reset the gradients of the parameters
Sigma <- model() # compute the model-implied covariance matrix
# compute the negative log-likelihood
dist <- distr_multivariate_normal(loc = model$mu, covariance_matrix = Sigma)
loss <- -dist$log_prob(dat)$sum()
loss$backward() # compute gradients and store them in parameter tensors
opt$step() # take a step in the negative gradient direction using adam
}
# show parameter table
model$partable()
id lhs op rhs user block group free ustart exo label plabel start est se
1 1 visual =~ x1 1 1 1 1 NA 0 .p1. 1 0.900 NA
2 2 visual =~ x2 1 1 1 2 NA 0 .p2. 1 0.498 NA
3 3 visual =~ x3 1 1 1 3 NA 0 .p3. 1 0.656 NA
4 4 textual =~ x4 1 1 1 4 NA 0 .p4. 1 0.990 NA
5 5 textual =~ x5 1 1 1 5 NA 0 .p5. 1 1.102 NA
6 6 textual =~ x6 1 1 1 6 NA 0 .p6. 1 0.917 NA
7 7 speed =~ x7 1 1 1 7 NA 0 .p7. 1 0.619 NA
8 8 speed =~ x8 1 1 1 8 NA 0 .p8. 1 0.731 NA
9 9 speed =~ x9 1 1 1 9 NA 0 .p9. 1 0.670 NA
10 10 x1 ~~ x1 0 1 1 10 NA 0 .p10. 1 0.549 NA
11 11 x2 ~~ x2 0 1 1 11 NA 0 .p11. 1 1.134 NA
12 12 x3 ~~ x3 0 1 1 12 NA 0 .p12. 1 0.844 NA
13 13 x4 ~~ x4 0 1 1 13 NA 0 .p13. 1 0.371 NA
14 14 x5 ~~ x5 0 1 1 14 NA 0 .p14. 1 0.446 NA
15 15 x6 ~~ x6 0 1 1 15 NA 0 .p15. 1 0.356 NA
16 16 x7 ~~ x7 0 1 1 16 NA 0 .p16. 1 0.799 NA
17 17 x8 ~~ x8 0 1 1 17 NA 0 .p17. 1 0.488 NA
18 18 x9 ~~ x9 0 1 1 18 NA 0 .p18. 1 0.566 NA
19 19 visual ~~ visual 0 1 1 0 1 0 .p19. 1 1.000 0
20 20 textual ~~ textual 0 1 1 0 1 0 .p20. 1 1.000 0
21 21 speed ~~ speed 0 1 1 0 1 0 .p21. 1 1.000 0
22 22 visual ~~ textual 0 1 1 19 NA 0 .p22. 0 0.459 NA
23 23 visual ~~ speed 0 1 1 20 NA 0 .p23. 0 0.471 NA
24 24 textual ~~ speed 0 1 1 21 NA 0 .p24. 0 0.283 NA
To install the latest version of tensorsem
, run the following:
torch
as per the instructions here: https://github.com/mlverse/torchR
package from this repository:
r
remotes::install_github("vankesteren/tensorsem")
See the examples
directory for some usage examples and documentation.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.