View source: R/pmpp_aux_funcs.R
Produce posterior means of lambda's for the parametric GMM implementation given autoregressive coefficient (rho)
| 1 2 3 | GMM_parametric(rho, alpha = 0, optim_method, init, n_lambda, n_alpha,
  X_mat, Y_mat, Z_mat, W, T, N, aux_Y0, common_par_method, X_star, Y_star,
  Z_star)
 | 
| rho | lagged dependent variable coefficients | 
| alpha | external variables coefficients | 
| optim_method | optimization method | 
| init | initial values for the optimization routine | 
| n_lambda | number of columns in W; currently always set to 1 | 
| n_alpha | number of external variables | 
| X_mat | lagged dependent variable matrix | 
| Y_mat | dependent variable matrix | 
| Z_mat | external variable matrix | 
| W | cross-sectionally invariant variables - not used now | 
| T | time dimension of the data | 
| N | cross-sectional dimension of the data | 
| aux_Y0 | auxiliary matrix with initial observations of the dependent variable | 
| common_par_method | method for estimating common parameters | 
| X_star | auxiliary matrix for OFD transformation | 
| Y_star | auxiliary matrix for OFD transformation | 
| Z_star | auxiliary matrix for OFD transformation | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.