Description Usage Arguments Value References See Also
Fitting a PCM model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | PCMFit(
X,
tree,
model,
SE = matrix(0, PCMNumTraits(model), PCMTreeNumTips(tree)),
metaI = PCMInfo(X, tree, model, SE),
positiveValueGuard = Inf,
argsPCMParamLowerLimit = NULL,
argsPCMParamUpperLimit = NULL,
matParInit = NULL,
numRunifInitVecParams = if (is.null(matParInit)) 1000L else 0L,
numGuessInitVecParams = if (is.null(matParInit)) 100L else 0L,
numCallsOptim = 10L,
control = NULL,
doParallel = FALSE,
verbose = FALSE
)
|
X |
a |
tree |
a phylo object with N tips. |
model |
an S3 object specifying both, the model type (class, e.g. "OU") as well as the concrete model parameter values at which the likelihood is to be calculated (see also Details). |
SE |
a k x N matrix specifying the standard error for each measurement in
X. Alternatively, a k x k x N cube specifying an upper triangular k x k
factor of the variance covariance matrix for the measurement error
for each tip
Note that the above behavior is consistent with the treatment of the model
parameters |
metaI |
a list returned from a call to |
positiveValueGuard |
a real number (not necessarily positive) used during
the fit as a threshold for highly positive but likely incorrect log-likelihood
values. This argument is set to |
argsPCMParamLowerLimit, argsPCMParamUpperLimit |
named lists with
arguments passed to the functions |
matParInit |
a matrix of any number of rows and p columns where, p is
the number of variable numerical parameters in the model
(equal to |
numRunifInitVecParams, numGuessInitVecParams |
integers specifying how
many parameter vectors should be drawn from a uniform distribution between
|
numCallsOptim |
integer specifying the maximum number of calls to
|
control |
a list passed as control argument to |
doParallel |
logical indicating if optim calls should be executed in parallel. Default: FALSE. |
verbose |
logical indicating if information messages should be printed to the console while running. Default: FALSE. |
an object of class PCMFit
Mitov, V., Bartoszek, K., & Stadler, T. (2019). Automatic generation of evolutionary hypotheses using mixed Gaussian phylogenetic models. Proceedings of the National Academy of Sciences of the United States of America, 35, 201813823. http://doi.org/10.1073/pnas.1813823116
Mitov, V., Bartoszek, K., Asimomitis, G., & Stadler, T. (2019). Fast likelihood calculation for multivariate Gaussian phylogenetic models with shifts. Theoretical Population Biology. http://doi.org/10.1016/j.tpb.2019.11.005
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.