knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
Partitioning using local subregions (PULS) is a clustering technique designed to explore subregions of functional data for information to split the curves into clusters.
You can install the released version of puls from CRAN with:
install.packages("puls")
And the development version from GitHub with:
# install.packages("remotes") remotes::install_github("vinhtantran/puls")
This is a basic example which shows you how to solve a common problem:
library(puls) library(fda) # Build a simple fd object from already smoothed smoothed_arctic data(smoothed_arctic) NBASIS <- 300 NORDER <- 4 y <- t(as.matrix(smoothed_arctic[, -1])) splinebasis <- create.bspline.basis(rangeval = c(1, 365), nbasis = NBASIS, norder = NORDER) fdParobj <- fdPar(fdobj = splinebasis, Lfdobj = 2, # No need for any more smoothing lambda = .000001) yfd <- smooth.basis(argvals = 1:365, y = y, fdParobj = fdParobj) Jan <- c(1, 31); Feb <- c(31, 59); Mar <- c(59, 90) Apr <- c(90, 120); May <- c(120, 151); Jun <- c(151, 181) Jul <- c(181, 212); Aug <- c(212, 243); Sep <- c(243, 273) Oct <- c(273, 304); Nov <- c(304, 334); Dec <- c(334, 365) intervals <- rbind(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec) PULS4_pam <- PULS(toclust.fd = yfd$fd, intervals = intervals, nclusters = 4, method = "pam") PULS4_pam
You can make a tree plot:
plot(PULS4_pam)
Or, a wave plot:
ggwave(toclust.fd = yfd$fd, intervals = intervals, puls = PULS4_pam)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.