knitr::opts_chunk$set(echo = TRUE)

Priori, Posteriori, Prädiktive Verteilung

#source("Code/LearnBayes-discrete.R")

Marginale und Bedingte Posteriori

Modellierung

Lineares Modell

n <- 50
b0.true <- 7
b1.true <- 2
tau.true <- .01
x <- 1:n
y <- rnorm(n,b0.true+b1.true*x,sd=sqrt(1/tau.true))
plot(x,y)

print(lm(y~x))

Poisson-Modellierung

$$ f(y_i|\lambda) = \frac{\lambda_i^{y_i}}{y_i!}\exp{-\lambda_i}$$ $$ \lambda_i=\exp(\alpha+\beta x_i) $$ $$ \alpha \sim{\rm N}(0,v_\alpha^2)$$ $$ \beta \sim{\rm N}(0,v_\beta^2)$$ $$ p(\alpha,\beta|x,y) \propto \prod\exp(\alpha+\beta x_i)^{y_i}\exp(-\exp(\alpha+\beta x_i)) \exp(-0.5v_a^{-2}\alpha^2) \exp(-0.5v_b^{-2}\beta^2) $$



volkerschmid/bayeskurs documentation built on Dec. 23, 2021, 4:10 p.m.