library(rattle)
library(rpart.plot)
library(RColorBrewer)
library(devtools)
install('.')
library(mowRandomForest)
library(rpart)
library(caret)
library(randomForest)
#load dataset
over50K = read.csv(
file = 'data/50K-y/adult.data',
header = TRUE,
sep = ','
)
testOver50k = read.csv(
file = 'data/50K-y/adult.test',
header = TRUE,
sep = ','
)
#show it
head(over50K)
#grow a custom forest
mowForest <- mowRandomForest(
df = trainset,
formula = salary ~.,
ntree = 20,
complexity = 0.01,
subsetRatio = 0.3,
zratio = 0.3
)
mow_forest_preeds <- predict(mowForest,testset)
confusionMatrix(factor(testset$salary),factor(mow_forest_preeds))
#grow tree with rpart
tree <- rpart(
salary ~ .,
method = "class",
data = over50K
)
print(tree)
summary(tree)
fancyRpartPlot(tree)
tree2_preds <- predict(tree, testOver50k)
confusionMatrix(data = factor(ifelse(tree2_preds[,1]>= 0.5,1,2)), reference = factor(testOver50k$salary))
#grow tree with forest
tree <- randomForest(
formula = salary ~.,
data = over50K,
importance = TRUE
)
print(tree)
summary(tree)
fancyRpartPlot(tree)
tree2_preds <- predict(tree, testOver50k)
confusionMatrix(data = factor(ifelse(tree2_preds[,1]>= 0.5,1,2)), reference = factor(testOver50k$salary))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.