# My first try of training classic random forest
library(randomForest)
# Load data
bank = read.csv("data/bank/bank-full.csv", header = TRUE, sep = ";")
dataset <- bank
dataset$y <- as.factor(dataset$y)
dataset <- dataset[sample(nrow(dataset)),]
train_indices <- 1:round(0.7 * nrow(dataset))
trainset <- dataset[train_indices,]
test_indices <- round(0.7 * nrow(dataset)):nrow(dataset)
testset <- dataset[test_indices,]
# Grow a forest
system.time(
forest <- randomForest(
y ~ .,
data = trainset,
))
pred_forest <- predict(forest,newdata = testset)
# Get some feedback
levels(pred_forest) <- levels(factor(testset$y))
confusionMatrix(testset$y,pred_forest)
library(devtools)
install('.')
library(mowRandomForest)
library(rpart)
#grow a custom forest
mowForest <- mowRandomForest(
df = trainset,
formula = y ~.,
ntree = 50,
complexity = -1,
subsetRatio = 1,
zratio = 0.6
)
mow_forest_preeds <- predict(mowForest,newData = testset)
mow_forest_preeds <- (factor(mow_forest_preeds))
# Get some feedback
levels(mow_forest_preeds) <- levels(factor(testset$y))
confusionMatrix(testset$y,mow_forest_preeds)
library(rattle)
library(rpart.plot)
library(RColorBrewer)#grow tree with rpart
tree <- rpart(
y ~ .,
method = "class",
data = trainset
)
print(tree)
summary(tree)
fancyRpartPlot(tree)
tree2_preds <- predict(tree, testset)
tree2_preds <- round(tree2_preds)
confusionMatrix(factor(testset$y),factor(ifelse(tree2_preds[,1]==1,"no","yes")))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.