The bbreg package deals with regression models with response variables being continuous and bounded. It currently provides implementation of two regression models: bessel regression https://arxiv.org/abs/2003.05157 and beta regression https://doi.org/10.1080/0266476042000214501. For both of these models, the estimation is done with the EM-algorithm. The EM-algorithm approach for beta regression was developed in https://doi.org/10.1080/00949655.2017.1350679.
install.packages("bbreg")
To install the bbreg package from this repository, just run the command:
#install.packages("devtools")
devtools::install_github("vpnsctl/bbreg")
To install the bbreg package from this repository with vignette, run the command:
#install.packages("devtools")
devtools::install_github("vpnsctl/bbreg", build_vignettes = TRUE)
This repository will always contain the most recent version of the bbreg package.
The bbreg package has a vignette. Check the most recent version of the vignette at https://rpubs.com/alexandrebsimas/intro-bbreg
The usage of the bbreg package is analogous to the usage of standard regression functions and packages in R:
library(bbreg)
fit <- bbreg(agreement ~ priming + eliciting, data = WT)
fit
#>
#> Bessel regression via EM - Model selected via Discrimination test (DBB)
#>
#> Call:
#> bbreg(agreement ~ priming + eliciting | 1)
#>
#> Coefficients modeling the mean (with logit link):
#> (intercept) priming eliciting
#> -1.1537851 -0.2548633 0.3392742
#> Coefficients modeling the precision (with identity link):
#> (intercept)
#> 4.924825
summary(fit)
#>
#> Bessel regression via EM - Model selected via Discrimination test (DBB):
#> Call:
#> bbreg(agreement ~ priming + eliciting | 1)
#> Number of iterations of the EM algorithm = 297
#>
#> Results of the discrimination test DBB:
#> sum(z2/n) sum(quasi_mu) |D_bessel| |D_beta|
#> 0.0853 52.6201 0.0004 0.0030
#>
#> Pearson residuals:
#> RSS Min 1Q Median 3Q Max
#> 331.9432 -1.7387 -0.6606 -0.3847 0.5562 4.5786
#>
#> Coefficients modeling the mean (with logit link):
#> Estimate Std.error z-value Pr(>|z|)
#> (intercept) -1.15379 0.05251 -21.971 < 2e-16 ***
#> priming -0.25486 0.05733 -4.446 8.77e-06 ***
#> eliciting 0.33927 0.05846 5.804 6.49e-09 ***
#>
#> Coefficients modeling the precision (with identity link):
#> Estimate Std.error z-value Pr(>|z|)
#> (intercept) 4.9248 0.4493 10.96 <2e-16 ***
#> g(phi) = 0.1316
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
For further details we refer the reader to the vignette whose link can be found above.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.