How many combinations are significantly different in a one-sided comparison and not in a two-sided comparison?

library(mtest)
ex <- list(c(100, 0), c(80, 0))
f <- bernDist(ex)
f <- calCumul(f)
r <- matrix(ncol = 2, nrow = 0)
lim <- 0.05
tolabel <- matrix(ncol = 6, nrow = 0)
under <- 0
for (n in f){
  s <- os.m.test(t(n$desc))
  r <- rbind(r, c(s, n$cval))
  if (s < lim){
    under <- under + 1
    if (n$cval > lim){
      tolabel <- rbind(tolabel, c(s, n$cval, n$desc[1, 1], n$desc[2, 1], n$desc[1, 2], n$desc[2, 2]))
    }
  }
}
smoothScatter(r)
title('Comparison between one-sided and two-sided')
txt <- paste(nrow(tolabel), '/', under, '\n', round(100 * nrow(tolabel)/under, 2), '%')
legend(legend = c(txt), pch=2, col=c('black'), x='right', y='middle')
for (i in tolabel){
  n <- tolabel[i,]
  v <- n[1]
  x <- v
  y <- n[2]
  l <- paste(n[3], ' ', n[4], '\n', n[5], ' ', n[6], sep = '')
  points(x, y, pch = 2)
  #text(x, y, l)
}
t <- r
lim <- 0.05
t[t[,1] < lim & t[,2] > lim,]


vqf/mtest documentation built on Dec. 23, 2021, 4:11 p.m.