leebounds | R Documentation |
leebounds
basic Lee (2009) bounds on treatment effect without covariates. Bounds are defined under monotonicity assumption
stating that treatment cannot hurt selection.
leebounds(leedata)
leedata |
data frame containing three fields \itemresleedata$treat: binary treatment indicator \itemresleedata$selection: selection=1 if the outcome is observed \itemresleedata$outcome: outcome=selection*outcome |
A list containing the estimate of lower bound and upper bound
David Lee (2009). Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects. The Review of Economic Studies, 76(3) 1071-1102. https://www.princeton.edu/~davidlee/wp/resrevision8.pdf
n <- 500; x <- matrix(rnorm(n*5),nrow=n)
a <- runif(n); y <- a + rnorm(n,sd=.5)
ce.res <- ctseff(y,a,x, bw.seq=seq(.2,2,length.out=100))
plot.ctseff(ce.res)
# check that bandwidth choice is minimizer
plot(ce.res$bw.risk$bw,ce.res$bw.risk$risk)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.