| function | parameters | usage | source code |
|------:|:------|:------:|:----:|
| lasso_solve
|y
, X
, lambda
, epsilon = .1
| a Solver for the Lasso problem using the coordinate descent algorithm. Returns a vector of betas. | see code |
| elasticNet_solve
| y
, X
, lambda
, epsilon = .1
| a Solver for the ElasticNet problem using the coordinate descent algorithm. Returns a vector of betas. | see code |
| tune_lasso
|lambda_max
, step_lambda
, ytrain
, Xtrain
, yvalid
, Xvalid
|Returns the optimal lambda for Lasso, given a training and a validation set | see code |
| tune_EN
|lambda_max
, step_lambda
, ytrain
, Xtrain
, yvalid
, Xvalid
| Returns the optimal lambda and alpha for ElasticNet, given a training and a validation set | see code |
| cv_lasso
| lambda_max
, step_lambda
, n_folds = 10
, y
, X
, one_stderr_rule = TRUE
| Finds the best lambda for Lasso using cross validation. | see code |
| cv_EN
| lambda_max
, step_lambda
, n_folds = 10
, y
, X
, one_stderr_rule = TRUE
| Finds the best lambda and alpha for Elastic Net using cross validation. | see code |
| plot_cv_lasso
| cv_results
| Takes the output of cv_lasso
and plots the MSE associated with each lambda. | see code |
| plot_cv_EN
| cv_results
| Plot the result of cv_EN
| see code |
| predict
| betas
, new_data
| Given a vector of betas for a model, returns the model's predictions for a new set of observations. | see code |
| createData
| betas
, n
, sigma_error
, example_number
| Creates simulated data for a given simulation setting (see more below) | see code |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.