This package gives a simple solution for normality transformation based on the newest transformation algorithm by Chou, Youn Min; Polansky, A. M. M. R. L. (1998). The rich options it provides can be used for simulations on the algorithm. It uses standard S3 class and methods, so it's an small but indispensable building block for statistical procedures which have the problem of non-normality.

There are now two packages on CRAN can do Johnson normality transformations, Johnson by Edgar Santos Fernandez and JohnsonDistribution by A.I. McLeod and Leanna King. However, both of them have certain limitations to performing easy and correct normality transformation.

Although Johnson package is also based on the algorithm by Chou, Youn Min; Polansky, A. M. M. R. L. (1998), it's a C style implementation and hasn't been vectorized, so it's hard to debug and it generally takes 10 times longer than **jtrans**. It implementes the sample quantile function in a non-standard way (different from the **quantile** function from **stats** package), which will lead to errors in the following calculations.

JohnsonDistribution package is based on I. D. Hill (1976). It aims to provide Johnson curve distribution and estimation functions, so the design concept is slightly different from Johnson normality transformation.

**jtrans** is the main function. Import is a numeric vector of non-normal data. Output is the transformed data with Johnson curve and parameters. The Shapiro-Wilk test is used by default, and the p.value of the transformed data will also be returned.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.