View source: R/ZINQ_combination.R
ZINQ_combination | R Documentation |
Combine the marginal p-values
ZINQ_combination(
input,
method = "MinP",
taus = c(0.1, 0.25, 0.5, 0.75, 0.9),
M = 10000
)
input |
An output from |
method |
Combination method, "MinP" for MinP test, "Cauchy" for Cauchy combination test; default is "MinP". |
taus |
A grid of quantile levels, must be a subset or equal to that from |
M |
The number of MC draws from the joint distribution of quantile rank-scores when |
Please choose 'MinP' or 'Cauchy' for method
, no other options.
taus
must be a subset or equal to the grid used to produce input
.
A pvalue, the final p-value of ZINQ.
Ling, W. et al. (2021). Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ). Microbiome 9, 181.
He, Z. et al. (2017). Unified sequence-based association tests allowing for multiple functional annotations and meta-analysis of noncoding variation in metabochip data. The American Journal of HumanGenetics 101(3), 340–352.
Lee, S. et al. (2012). Optimal tests for rare variant effects in sequencing association studies. Biostatistics 13(4), 762–775.
Liu, Y., Xie, J. (2019). Cauchy combination test: a powerful test with analytic p-value calculation under arbitrary dependency structures. Journal of the American Statistical Association, 1–18.
n = 300
p <- function(x0, gam0=0.75, gam1=-0.15){
lc = gam0 + gam1*x0
exp(lc) / (1 + exp(lc))
}
x = c(rep(0, n), rep(1, n))
w = 0.5 + 1.5*x + (1+0.15*x)*rchisq(2*n,df=1)
b = rbinom(2*n, 1, p(x))
y = w*b
dat = data.frame(y, x)
result = ZINQ_tests(formula.logistic=y~x, formula.quantile=y~x, C="x", data=dat)
ZINQ_combination(result, method="Cauchy")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.