F_MC_powerCircadian_outlier: F-statistics-based Monte-Carlo Circadian Power Calculation...

Description Usage Arguments Details Value Author(s) Examples

View source: R/F_MC_powerCircadian_outlier.R

Description

Monte-Carlo circadian power calculation based on F-statistics when outliers exist.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
F_MC_powerCircadian_outlier(
  B_MC = 10000,
  n,
  A,
  sigma,
  outlier.perc = 0.05,
  phi = 0,
  period = 24,
  C = 10,
  cts = NULL,
  alpha = 0.05
)

Arguments

B_MC

Numer of Monte-Carlo simulations. Default is 10000.

n

Sample size.

A

Amplitude of the sine curve: A * sin(2π/period * (phi + cts)) + C.

sigma \sigma

in the independent Normal error term N(0,σ).

outlier.perc

The percentage of outlying samples. Default is 0.05.

phi

Phase of the sine curve. Default is 0.

period

Period of the sine curve. Default is 24.

C

Offset of the sine curve. Default is 10.

cts

Circadian time design vector.

alpha

Type I error control. Default is 0.05.

Details

Calculate power of circaidan data from Monte-Carlo simulated data when outliers exist.

Value

A vector of empirical type I error and Monte-Carlo power based on F-statistics.

Author(s)

Wei Zong, Zhiguang Huo

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
B_MC = 10000
n = 100
cts = seq(0,24,length.out = n+1)[-1]
A = 1
sigma = 1
phi = 0
C = 10
outlier.perc = 0.05
F_MC_powerCircadian_outlier(B_MC, n, A, sigma, outlier.perc, phi, period = 24, C=10, cts,
alpha = 0.05)

weiiizong/powerCircadian documentation built on Dec. 23, 2021, 5:09 p.m.