Description Usage Arguments Value Author(s) References See Also
Extreme Learning Machine Using the Buckley-James estimator
1 2 | elm_surv(trainx, trainy, testx, Regularization_coefficient, kerneltype,
Kernel_para)
|
trainx |
The covariates(predictor variables) of training data. |
trainy |
Survival time and censored status of training data. Must be a Surv |
testx |
The covariates(predictor variables) of test data. |
Regularization_coefficient |
Ridge or Tikhonov regularization parameter. Default value for |
kerneltype |
Type of kernel matrix. kerneltype=1,a RBF kernel;kerneltype=2 , a linear kernel;kerneltype=3 ,a polynomial kernel;kerneltype=4, a sigmoid kernel. |
Kernel_para |
Parameters for different types of kernels. A single value for kerneltype=1 or 2. A vector for kerneltype=3 or 4. |
List of returned values
elmsurvfit | Mean Square Error(MSE) on training data. |
newy | Esitmated survival times of training data by the Buckley-James estimator. |
outputWeight | Weights of the output layer in ELM. |
testpre | The estimated survival times for testx data. |
Hong Wang
Hong Wang et al (2017). A Survival Ensemble of Extreme Learning Machine. Applied Intelligence, in press.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.