ateBootstrap | Compute bootstrap confidence intervals on the ATE parameter |
ateTMLE | Compute TMLE on the ATE parameter |
ateTuneHyperparam | Use plateau method to choose the L1 penalty of HAL (ATE) |
avgDensityBootstrap | Compute bootstrap confidence intervals on the average squared... |
avgDensityTMLE | onestep TMLE of average density parameter |
avgDensityTuneHyperparam | Use plateau method to choose the L1 penalty of HAL (average... |
basic_fixed_HAL | (Experimental) Super Learner wrapper for fixed HAL |
blipVarContinuousYTuneHyperparam | Use plateau method to choose the L1 penalty of HAL (blip... |
blipVarianceBootstrap | Bootstrap confidence intervals for the blip variance... |
blipVarianceBootstrapContinuousY | Bootstrap confidence intervals for the blip variance... |
blipVarianceTMLE | Compute TMLE on the variance of CATE (binary Y) |
blipVarianceTMLEContinuousY | Compute TMLE on the variance of CATE (continuous Y) |
comprehensiveBootstrap | Run 'generalBootstrap' twice (regular + second-order... |
cross_entropy | cross-entropy loss |
cvDensityHAL | Fit a 1-d density using HAL regression; automatic tuning of... |
densityHAL | Fit a 1-d density using HAL regression |
empiricalDensity | Store a 1-dimensional density function |
fit_fixed_HAL | fitting fixed_HAL. outputs an object of the fit use the old... |
generalBootstrap | Abstract class of bootstrap |
generate_SL.fixed_HAL | Generator of SL wrappers |
grabPlateau | Grab a plateau of a function y = f(x) |
longiData | Convert univariate series to longitudinal format |
predict.fixed_HAL | prediciton function for fixed_HAL object |
predict.SL.fixed_HAL | SuperLearner prediction function for the SL wrapper |
scaleX | Perform min/max standardization based on (x - min)/(max -... |
tuneHyperparam | Use plateau method to choose the L1 penalty of HAL (abstract... |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.