knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
You can install the released version of conisi from github with:
devtools::install_github( "wimmyteam/conisi", ref="master" )
Load the parameters
file_path <- system.file("test-data", "manually_edited_parameters.csv", package="conisi") # You would normally provide your own parameter file parameters <- conisi::load_parameters( file_path, sim_name = "sa_37", start_date = lubridate::ymd("2020-03-10") )
Set the size of simulated population and length of simulation
pop <- 1000000 #The size of the population to simulate days <- 100 #The number of days to simulate
Run the simulation and calculate pandemic metrics
mod_result <- COVIDmodel_run_and_mutate(par_table, pop, days) # Runs the simulation
Calculate the RMSE
# Load the target data load(system.file("test-data", "observed_data.RData", package="conisi")) #Loads test_data # start_date determines which date t = 0 from the model output will be matched to. start_date <- test_data$date[1] rmse <- modelrmse(modelOutput = mod_result, start_date, test_data, weights = c(1, 0.5) )
# Get the parameters somewhere, needs "experiment" column. parameters <- get_par_table() # TODO Update the conisi::load_parameters function to allow loading many experiments from a single file. # The conisi package uses the foreach package to run simulations in parallel. # This required a bit of preparation availablecores <- 2 doParallel::registerDoParallel(cores = availablecores) ## Alternatively to run in the cloud on Azure: # library(doAzureParallel) # setCredentials("../credentials.json") # cluster <- makeCluster("cluster.json") # registerDoAzureParallel(cluster) # getDoParWorkers() # Actually run the simulations mod_result <- COVIDmodel_run_and_mutate_many(xparm_table, pop, 100) ## If using azure, remember to turn off the cluster when you are done # stopCluster(cluster)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.